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Introduction



Throughput Prediction: Use Cases

Throughput prediction enables network awareness in applications.

Query Plan Selection:

Raajay Viswanathan et al. , CLARINET, OSDI’2016
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Throughput Prediction: Use Cases

Throughput prediction enables network awareness in applications.

Transfers in Overlay Networks:
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Reactive Flows

Reactive flows (most importantly, TCP) are widely used.

Data center network: can be more than 99%

Alizadeh et al. , DCTCP, SIGCOMM’2010
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Reactive Flows

Reactive flows (most importantly, TCP) are widely used.
Internet: 80% - 90%

CAIDA, Internet traffic analysis, 2002-2009
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Throughput Prediction for Reactive Flows is Not Easy

Reactive flows interfere with each other.

Orange: Background flows Blue: New flows (to be predicted)

x1 = x2 = 200Mbps
x3 = 200Mbps

x1 = x2 = 150Mbps
x3 = x4 = 150Mbps
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Throughput Prediction for Reactive Flows is Not Easy

There exist different congestion control algorithms.

Solid: TCP Vegas Dashed: TCP Reno

x1 = x2 = 150Mbps
x3 = x4 = 150Mbps

x1 = x2 =?Mbps
x3 =?Mbps, x4 =?Mbps
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Throughput Prediction for Reactive Flows is Not Easy

Throughput can also be affected by source constraints.

Top: x4 ≤ 180Mbps Bottom: x4 ≤ 60Mbps

x1 = x2 = 150Mbps
x3 = x4 = 150Mbps

x1 = x2 = 180Mbps
x3 = 180Mbps, x4 = 60Mbps
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Summary

• Throughput prediction is useful
• Reactive flows (TCP) are widely used
• Throughput prediction for reactive flows is not easy

• Reactive flows interfere with each other
• Heterogeneous reactive mechanisms
• The effects of source constraints
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Basic Ideas



Motivation: Model-based Throughput Prediction

We want to answer this question (Q1):
Given a set of (TCP) flows, what is the expected throughput of

each flow?
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Motivation: Model-based Throughput Prediction

We want to answer this question (Q1):
Given a set of (TCP) flows, what is the expected throughput of

each flow?

Instead of answering it directly, we answer this question (Q2):
How does the network allocate bandwidth for TCP flows?

There is an answer to this question! Network Utility Maximization

argmax
∑

Ui(xi) (The allocation maximizes the total utility. . . )

Ax ≤ c (. . . subjet to link capacity constraints)
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Breakdown

To solve NUM (Q2), we need to answer the following questions:

Q3 How do we know the utility function of each flow?

Srikant’s utility function Ui(xi) = ρi
x1−αi

αi − 1 (leading to Q6 and Q7).

Q4 How do we obtain the capacity constraint information?
Global location mapping, assuming non-blocking switch.

Q5 How do we handle source constraints?
Explicit declaration in queries and lazy identification in samples.
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Further Breakdown

To compute Srikant’s utility function (Q3), we need

Q6 How do we obtain αi?
Existing works by Oshio et al. .

Q7 How do we obtain ρi?
Parameter estimation by analyzing the samples.

Q8 How do we get the samples?
Time-based traffic mirroring.
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Overview
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Problem Formulation



Network Model

We assume there are no bottlenecks in the core of the network
(non-blocking switch assumption of DCN). The network is a bipartite graph.
For a network with H hosts, there are L = 2H links numbered as l1, . . . , lL
and L = {l1, . . . , lL}.

Ingress links Egress links

l1
l2

lH−1
lH

lH+1
lH+2

l2H−1
l2H
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Flow Model

Assume there are N background flows numbered as f1, . . . , fN and M
queried flows numbered as q1, . . . , qM. Let F = {f1, . . . , fN} and
Q = {q1, . . . , qM}. Let A = {aij}L×N and B = {bij}L×M be the routing matrix.

Ingress links Egress links

l1
l2

lH−1
lH

lH+1
lH+2

l2H−1
l2H
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Flow Model (Cont.)

Let xi be the throughput of fi and yi be the throughput of qi. Let τi be the
source constraint of fi and πi be the source constraint of qi. Let
x = {x1, . . . , xN}T, y = {y1, . . . , yM}T, τ = {τ1, . . . , τN}T and
π = {π1, . . . , πM}T

Ingress links Egress links

l1
l2

lH−1
lH

lH+1
lH+2

l2H−1
l2H
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Throughput Prediction Problem

The throughput prediction of Q is the solution to this problem:

argmax
y

( N∑
i=1

Ufi(xi) +
M∑

i=1
Uqi(yi)

)
Subject to: AB

I O
O I

(x
y

)
≤

c
τ

π



23 / 58



Parameter Estimation

We consider the simpler form (let Q = ∅ and ignore source constraints τ ),
replace Ufi(x) with Srikant’s utility function:

argmax
x

N∑
i=1

(
ρi

x1−αi
i

1 − αi

)
Subject to:

Ax ≤ c

The solution x̂ can be considered as a function x̂(F ,α;ρ) because the
utility functions are concave and the domain is convex, or simply x̂(ρ) for
given F and α.
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Parameter Estimation (Cont.)

For a given set of flows F , assume the α parameter in Srikant’s
utility function of each flow is known (denoted as α). Assume we
have K samples x̃(1), . . . , x̃(K), the estimated ρ parameter of all
flows (denoted as ρ̂) is the solution of the following problem:

ρ̂ = argmin
ρ

1
2K

K∑
k=1

∥x̂(ρ)− x̃(k)∥2 (Minimize the error)
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Practical Issues

I1 To estimate throughput for all flows, we need a ρi for each possible
(src, dst) pair. The number of potential parameters is large (H2 for a
network with H hosts)

I2 Solving the parameter estimation problem by compute gradient by
definition can be slow.

I3 The estimation problem has not considered source constraints yet.
I4 It is impractical to monitor all the flows. How to sample the traffic

and extract useful information.
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Optimizations



Practical Issues and How to Solve Them

I1 To estimate throughput for all flows, we need a ρi for each possible
(src, dst) pair. The number of potential parameters is large (H2 for a
network with H hosts)
Reduce #variables by dividing (src, dst) pairs into equivalent classes.

I2 Solving the parameter estimation problem by compute gradient by
definition can be slow.

I3 The estimation problem has not considered source constraints (which
might be unknown) yet.

I4 It is impractical to monitor all the flows. How to sample the traffic and
extract useful information.
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Reduce the Number of Variables

• The utility function depends only on the end-to-end cost.
• In DCN, the topology is highly structured and many (src, dst) pairs
have similar end-to-end costs.

Al-Fares, SIGCOMM’2008
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Reduce the Number of Variables

Basic idea: Divide (src, dst) pairs to different equivalent classes

In a 3-layered fat tree topology, each host has 3 equivalent classes:

• In the same rack
• In the same Pod
• In different Pods

3H parameters instead of H2
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Problem Transformation

Let ϱj
i represent the ρ parameter for the i-th equivalent class of j-th host,

let ρ̄ = {ϱ1
1, ϱ

1
2, . . . , ϱ

H
3 }. Let pi be the equivalent class index of fi, we have

ρi = ρ̄pi and its matrix form

ρ = Λρ̄ where Λ =



0 · · · 0︸ ︷︷ ︸
p1−1

1 0 · · · · · · · · · · · ·

... . . . . . . . . .
0 · · · · · · · · · 0︸ ︷︷ ︸

pi−1

1 0 . . .

... . . . . . . . . .
0 · · · · · · 0︸ ︷︷ ︸

pN−1

1 0 · · · · · · . . .


N×3H
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Parameter Estimation for Equivalent Classes

For a given set of flows F , assume the α parameter in Srikant’s
utility function of each flow is known (denoted as α). Assume we
have K samples x̃(1), . . . , x̃(K), the estimated ρ̄ parameter of all
equivalent classes (denoted as ˆ̄ρ) is the solution of the following
problem:

ˆ̄ρ = argmin
ρ̄

1
2K

K∑
k=1

∥x̂(Λρ̄)− x̃(k)∥2 (Minimize the error)
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Practical Issues and How to Solve Them

I1 To estimate throughput for all flows, we need a ρi for each possible
(src, dst) pair. The number of potential parameters is large (H2 for a
network with H hosts)

I2 Solving the parameter estimation problem by compute gradient by
definition can be slow.
Derive the gradient from KKT conditions.

I3 The estimation problem has not considered source constraints (which
might be unknown) yet.

I4 It is impractical to monitor all the flows. How to sample the traffic and
extract useful information.

33 / 58



Deriving the Gradient

We first consider the simplified NUM problem and according to
Karush-Kuhn-Tucker condition (justified because the constraints are
linear, i.e., the problem is LCQ):

∇xf + λ̂T∇xg = 0 ⇒ ∀j, ρ̄pj x̂
−αj
j =

∑
k

akjλ̂k, (Stationarity)

λ̂Tg(x̂) = 0 ⇒ ∀k, λ̂k(
∑

j
akjx̂j − ck) = 0.

(Complementary Slackness)
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Deriving the Gradient (cont.)

We now consider the partial derivatives of (Stationarity) and
(Complementary Slackness) and after some reorganization, we have(

diag(ρ̄pjαjx−1−αj
j ) AT

diag(λk)A diag(
∑

j akjxj − ck)

)(
Jx(ρ̄)

Jλ(ρ̄)

)
=

(
Γ

O

)
where

Γj,i =

x−αj
j if pj = i,

0 if pj ̸= i.

To be able to compute the gradient Jx(ρ̄), the leftmost matrix must be
invertible.
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Deriving the Gradient (cont.)

We let (
M1M2

M3M4

)
=

(
diag(ρ̄pjαjx−1−αj

j ) AT

diag(λk)A diag(
∑

j akjxj − ck)

)
.

M1 is invertible, so we need to prove det(M4 − M3M−1
1 M2) ̸= 0.

(M4 − M3M−1
1 M2)ik =


∑

j akjx̂j − ck − λ̂kΦkk(ρ̄) if i = k
−λ̂iΦik(ρ̄) otherwise

where
Φik(ρ̄) = Φki(ρ̄) =

∑
j

aijakjρ̄
−1
pj α

−1
j x̂1+αj

j .
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Deriving the Gradient (cont.)

We can reorganize the matrix (by changing the order of constraints) by
whether λ̂k = 0:

det

(
diag(

∑
j akjx̂j − ck) O
M′

1 diag(λ̂k)M′
2

)
=
∏
λ̂k=0

(∑
j

akjx̂j − ck

) ∏
λ̂k ̸=0

λ̂k det(M′
2)

• If λ̂k = 0, usually
∑

j akjx̂j − ck ̸= 0. Otherwise, we can add a disruption
to ck to make sure

∑
j akjx̂j − ck ̸= 0 without affecting the solutions.

• det(M′
2) is a polynomial of ρ̄, it will not always be zero.

With a small disruption, we ensure the matrix is full-rank. So we use
numerical methods to get Jx̂(ρ̄).
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Deriving the Gradient (cont.)

With Jx̂(ρ̄), we can derive the gradient of the error function as:

∇E =
1
K

K∑
k=1

(x̂ − x̃(k))TJx̂(ρ̄)

In practice, we use spherical coordinates to avoid choosing step sizes. The
final gradient is

∇ϕE =
1
K

K∑
k=1

(x̂ − x̃(k))TJx̂(ρ̄)Jρ̄(ϕ)
T
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Practical Issues and How to Solve Them

I1 To estimate throughput for all flows, we need a ρi for each possible
(src, dst) pair. The number of potential parameters is large (H2 for a
network with H hosts)

I2 Solving the parameter estimation problem by compute gradient by
definition can be slow.

I3 The estimation problem has not considered source constraints (which
might be unknown) yet.
Consider effective source constraints through lazy identification.

I4 It is impractical to monitor all the flows. How to sample the traffic and
extract useful information.

39 / 58



Handling Unknown Source Constraints

Basic idea: Consider only the effective source constraints.

A sample might be constrained by an effective source constraint if:

• Sampled throughput is significantly
smaller than the estimated throughput
(of the same equivalent class).

• Sampled throughput is at a relatively
fixed rate.
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Practical Issues and How to Solve Them

I1 To estimate throughput for all flows, we need a ρi for each possible
(src, dst) pair. The number of potential parameters is large (H2 for a
network with H hosts)

I2 Solving the parameter estimation problem by compute gradient by
definition can be slow.

I3 The estimation problem has not considered source constraints (which
might be unknown) yet.

I4 It is impractical to monitor all the flows. How to sample the traffic and
extract useful information.
Consider low-throughput flows as non-reactive flows.
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Sampling

Basic idea: Identify individual throughput-sensitive flows and accumulate
the low-throughput flows.

Short-lived and low-throughput flows may not reach the equilibrium and
their throughput cannot be measured very accurately. But many
short-lived, low-throughput flows cannot be ignored.

Solution
Extract the individual flows with more than 5% of the total link capacity as
samples and compute the accumulated traffic demand from the rest. Let
vk be the traffic demand on the k-th link, the link capacity used in the
prediction is computed as ck − vk.

42 / 58



Evaluation



Settings

Topology: A Clos topology with K = 4, 16 hosts (32 links)

Flows: 100 initial flows, 60 samples each with 10-20 flows.

• We use NS2 to run the traffic and get the throughput for each sample.
The parameter estimation and prediction are analyzed offline.

• Each sample is first used as a query to measure the prediction error
and prediction time.

• We update the ρ every sample and measure the estimation time.

44 / 58



Prediction Accuracy (Vegas)

Metric: Relative errors: | x̃−x̂
x̃ |

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Relative Errors

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

After training 20 samples
After training 30 samples
After training 40 samples
After training 50 samples

>75% flows have a smaller relative error than 30%.
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Prediction Accuracy (Multiple TCP)

Metric: Relative errors: | x̃−x̂
x̃ |

• Predictions become less
accurate (60%/75% with
relative error smaller
than 30%)

• Prediction for TCP Reno
is more accurate than
Vegas

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Relative Errors

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

vegas
reno
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Prediction Time

Metric: The time used to conduct a prediction
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Less than 0.2s for up to 1056 flows (19 fg and 1037 bg).
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Parameter Estimation Convergence

Metric: The time used to get an optimal parameter estimation.

0 10 20 30 40 50
Number of Samples

0

5

10

15

20

25

30

35

40

Tr
ai

ni
ng

 T
im

e 
(s

)

48 / 58



Discussions



Prophet

A Model-Driven Throughput Prediction System

• Predict throughput by solving NUM problem
• Handle heterogeneity with unified utility functions (Srikant’s utility
function)

• Obtain traffic samples with advanced monitoring techniques (Per-flow
monitoring)

• Estimate unknown parameters ρ using the gradient descent method
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Limitations

Overall Framework

• Limited to special network topologies and special TCP variants.

Optimization

• Impact of multiple paths between two hosts is not analyzed.
• Convergence of the parameter estimation is not proved.
• Mistakes in the published paper (corrected in this presentation).

Evaluation

• Not enough real traffic analysis
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Limitations

Overall Framework

• Limited to special network topologies and special TCP variants.

Optimization

• Impact of multiple paths between two hosts is not analyzed.
• Convergence of the parameter estimation is not proved.
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Evaluation
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Revisit the Assumptions

• DC Network
What about an arbitrary network?

• Vegas and Reno
What about other TCP congestion control algorithms?

• Random Sampling
Are there better sampling methods?
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Revisit the Assumptions

• DC Network
What about an arbitrary network?

• Vegas and Reno
What about other TCP congestion control algorithms?

• Random Sampling
Are there better sampling methods?

Possible directions:

• In SDN, get routing matrix and propagation delay from the controller.
• Use function approximation to model the utility function for arbitrary
TCP variants.

• Sketch-based sampling
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Parameter Estimation: How to Get Unique ρ

A minimal example:

A =

100
110
101

 , c =

1
1
1

 ,α =

1
1
1

 , x̃ =

x1

x2

x3


There are actually multiple ρs which minimizes the estimation error as
long as:

ρ1 =
1
3 (2 + x1 − x2 − x3)

ρ2 + ρ3 =
1
3 (1 − x1 + x2 + x3)
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Prophet

A Model-Driven Throughput Prediction System

• Predict throughput by solving NUM problem
• Handle heterogeneity with unified utility functions (Srikant’s utility
function)

• Obtain traffic samples with advanced monitoring techniques (Per-flow
monitoring)

• Estimate unknown parameters ρ using the gradient descent method
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