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Introduction



A Motivating Example

• Three requests: red (r), blue (b) and
brown (y)

• Private QoS function:

1
α× hopcount + β

bandwidth

• Local preference: red request is from a
privileged client
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Existing Work

• Centralized optimization framework for SDN
• Example: SOL1
• Limitation: Require applications to submit private information

• Global view
• One-Big Switch
• End-to-end map abstraction

1Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. “Simplifying Software-Defined Network Optimization Using SOL”, NSDI’16
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Existing Work

• Centralized optimization framework for SDN
• Global view

• Example: NOX1

• Limitation: Contain redundant information even after filtering, leak
sensitive network information (topology),

• One-Big Switch
• End-to-end map abstraction

1Natasha Gude et al. “NOX: towards an operating system for networks”, SIGCOMM CCR’08
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Existing Work

• Centralized optimization framework for SDN
• Global view
• One-Big Switch1

• Example: CoFlow2, VL23
• Limitation: Assume no bottleneck inside the network, cannot present
end-to-end information

• End-to-end map abstraction

1Nanxi Kang et al. “Optimizing the “one big switch” abstraction in software-defined networks”, CoNEXT’13
2Mosharaf Chowdhury and Ion Stoica. “Coflow: A networking abstraction for cluster applications”, HotNet’12
3Albert Greenberg et al. “VL2: a scalable and flexible data center network”, SIGCOMM’09
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Existing Work

• Centralized optimization framework for SDN
• Global view
• One-Big Switch
• End-to-end map abstraction

• Example: ALTO1

• Limitation: Cannot present shared bottleneck

1Richard Alimi, Yang Yang, and Reinaldo Penno. “Application-layer traffic optimization (ALTO) protocol”, RFC 7285
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Overview

Requirements:
• Constructed on demand
• Without loss of information
• Protecting sensitive information
• Compact in size
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Overview

Requirements:
• Constructed on demand
• Without loss of information
• Protecting sensitive information
• Compact in size

The NOVA abstraction is
• Based on flow queries
• Using equivalent transformation
• Using irreversible transformation
• Reducing redundant information
as mush as possible
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NOVA



Key Observation

• Observation: Applications use
network views to make traffic
scheduling decisions to achieve a
certain objective.

• Conclusion: Equivalent network
views allow applications to always
make the same optimal decision.
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Application-Network Collaborative Optimization Model

Application
F: set of flows

minG({p̂i}, {q̂i},z)

Private variables z Private constraints
Network-related variables {p̂i}, {q̂i}

Network

Routing policies, topology, etc.

Application objective function
template:

min E({p̂i}, {q̂i})
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Application-Network Collaborative Optimization Model

Application
F

min E({p̂i}, {q̂i})

V′(P′,R′,A′k,Q′k)

Network
F

Routing policies, topology, etc.

V(P,R,Ak,Qk)

V′(P′,R′,A′k,Q′k)

NOVA

Network processing:
• Take flow request F and return a
subset of global view V

• NOVA kicks in and produces the
equivalent view V′
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Application-Network Collaborative Optimization Model

Application
F

min E({p̂i}, {q̂i})

V′(P′,R′,A′k,Q′k)

Network
F

Routing policies, topology, etc.

V(P,R,Ak,Qk)

V′(P′,R′,A′k,Q′k)

NOVANOVA

End-to-End metrics (p̂i):
• Accumulated along the forwarding
paths

• Values are (statistically) independent
of flows

• Based on Variant QoS metric algebra:
extended from Sobrinho’s QoS
algebra2, relaxed path concatenation
to linearize QoS metrics

P̂ = R× P

2João Luís Sobrinho. “Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet”, TON’02
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Application-Network Collaborative Optimization Model

Application
F

min E({p̂i}, {q̂i})

V′(P′,R′,A′k,Q′k)

Network
F

Routing policies, topology, etc.

V(P,R,Ak,Qk)

V′(P′,R′,A′k,Q′k)

NOVANOVA

Shared resources (q̂i):
• Constrained by resources
available on the forwarding paths

• Shared by different flows
Ak × q̂k ≤ qk
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Application-Network Collaborative Optimization Model

Application
F

min E({p̂i}, {q̂i})

V′(P′,R′,A′k,Q′k)

Network
F

Routing policies, topology, etc.

V(P,R,Ak,Qk)

V′(P′,R′,A′k,Q′k)

NOVANOVA

Common constraints:

R ≥ 0,Ak ≥ 0,qk ≥ 0, q̂k ≥ 0
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Equivalent Network View

A declarative definition (what we want to achieve):

• Applications can use the view to make the same traffic scheduling
decision.
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Equivalent Network View

A declarative definition (what we want to achieve):

• Applications can use the view to make the same traffic scheduling
decision.

A mathematical definition (how we verify the equivalence):

• End-to-End metrics:
R1 × P1 = R2 × P2

• Shared resources:
Fk1 =

{
x | Ak1x ≤ qk1

}
=

{
x | Ak2x ≤ qk2

}
= Fk2
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Basic Equivalent Transformations

V(P,R,Ak,Qk) V′(P′,R′,A′k,Q′k)
NOVA

A series of basic transformations

Network view used in the example:

R(AT) e1 e2 e3 e4 e5 e6 e7 e8
r1 1 0 0 1 0 0 1 0
r2 1 0 0 0 1 0 0 1
b1 0 1 0 1 0 1 0 0
b2 0 1 0 1 0 0 1 0
y1 0 0 1 1 0 0 1 0
y2 0 0 1 0 1 0 0 1
hop 1 1 1 1 1 1 1 1
bw 100 100 100 150 150 70 70 70
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Basic Transformation Example: Aggregation

• Equivalence condition: Same row vector
RT
j & Ak

j

• Merge columns with variant QoS metric
algebra

R(AT) e1 e2 e3 e4 e5 e6 e7 e8
r1 1 0 0 1 0 0 1 0
r2 1 0 0 0 1 0 0 1
b1 0 1 0 1 0 1 0 0
b2 0 1 0 1 0 0 1 0
y1 0 0 1 1 0 0 1 0
y2 0 0 1 0 1 0 0 1
hop 1 1 1 1 1 1 1 1
bw 100 100 100 150 150 70 70 70

⇓
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Basic Transformation Example: Decomposition

• Equivalence condition: Ak
j x ≤ qkj is

redundant and Rj =
∑

rR
(r)
j , Ak

j =
∑

rAk(r)
j

• Split columns so that new columns can
be aggregated

R(AT) e1 e2 e3 e4 e6 e7 e8
r1 1 0 0 1 0 1 0
r2 1 0 0 0 0 0 1
b1 0 1 0 1 1 0 0
b2 0 1 0 1 0 1 0
y1 0 0 1 1 0 1 0
y2 0 0 1 0 0 0 1
hop 1 1 1 1 1 1 2
bw 100 100 100 150 70 70 70

⇓
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Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Aggregate columns with the same row
vector (RT

j ,A
k
j )

• A pre-processing step
• Avoid corner case in redundancy check
(identical constraints)
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Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Find decomposable columns Vd

• Equivalent to finding redundant linear
constraints

• Well-studied problem

9



Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Check if only shared resources are
requested
• Equivalent to One-big switch abstraction
if no bottlenecks are within the network
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Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Decompose ∀v ∈ Vd with unit basis
• Bounded size (|V| − |Vd|+ |F|)
• Low computation overhead O(|Vd||F|)
• Equivalent to end-to-end abstraction if
V = Vd (only end-to-end metrics are
requested)
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Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Techniques to improve performance:
• Reduce space overhead: Aggregate the
new columns immediately

• Leverage parallel processing: Use
Map-Reduce-like divide-and-conquer
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Evaluation: Verifying Equivalence

topology: Kdl traffic pattern: few-to-many

One-big switch:
infeasible solution

NOVA:
overlap with raw network view
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Evaluation: Verifying Equivalence

topology: Kdl traffic pattern: few-to-manytopology: Kdl traffic pattern: few-to-many

topology: Kdl traffic pattern: many-to-many

topology: AS 2914 traffic pattern: many-to-many
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Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm
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Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

Determined by the nature of the network and the application
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Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

Can be controlled by NOVA
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Evaluation: Topology

Normalized redundancy preservation

traffic pattern: few-to-many

Topology can effect
the redundancy preservation
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Evaluation: Traffic Pattern

Redundancy preservation

Strict redundancy check:
No significant difference

Relaxed redundancy check:
Many-to-many has better
reduction ratio than
few-to-many
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Evaluation: Traffic Pattern

Computation overhead

topology: AS 2914, 8 threads

Few-to-many and
many-to-many patterns have
no significant difference
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Evaluation: Number of flows

Redundancy reduction

topology: AS 4755, traffic pattern: few-to-many

More flows,
more preserved elements
more information leaked
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Evaluation: Number of flows

Redundancy reduction

traffic pattern: few-to-many

Effect on reduction ratio
depends on topology and
redundancy check algorithm
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Evaluation: Number of flows

Computation overhead

topology: AS 2914, 8 threads

More flows,
larger computation time
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Evaluation: Redundancy Check Algorithm

Normalized redundancy preservation

traffic pattern: few-to-many

Relaxed redundancy check:
More remaining
redundant elements

Strict redundancy check:
Less remaining
redundant elements
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Evaluation: Redundancy Check Algorithm

Normalized communication overhead

topology: AS 2914, traffic pattern: few-to-many

Relaxed redundancy check:
Larger overhead (∼ 4x OBS)

Strict redundancy check:
Smaller overhead (∼ 3x OBS)

Optimal size without
information loss
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Evaluation: Redundancy Check Algorithm

Computation overhead

topology: AS 2914, traffic pattern: few-to-many, 8 threads

Time of strict redundancy
check algorithm
(∼ 5s for ∼500 flows)

Time of relaxed redundancy
check algorithm
(<3s for ∼3000 flows)

Time of decomposition
& aggregation
Time to compute P×R
(Routing cost only)
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Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

• Can effect the reduction ratio and computation time
• Usually does not change
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Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

• Mostly effect the relaxed redundancy check algorithm
• No significant correlations on computation time
• Usually does not change
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Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

• More flows, more information leaked, more communication overhead
and computation time

• Mostly effect the relaxed redundancy check algorithm
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Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

• Strict redundancy check: Better privacy protection, less
communication overhead, more computation overhead

• Relaxed redundancy check: More information leaked, more
communication overhead, less computation overhead
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Summary



Summary and Future Work

In this paper, we

• Identify the problem of providing on-demand network views and the
limitations of existing works

• Extend the QoS metric algebra and model the Application-Network
Collaborative Optimization

• Define equivalent network view and design novel and efficient
algorithms to construct it
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Conclusion

Evaluations show that:

• NOVA produces equivalent network view
• NOVA can effectively reduce redundant information and
communication overhead with strict redundancy check algorithm

• NOVA can differentiate privacy by choosing different redundancy
check algorithms and limiting the number of flows in a request
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Future Work

• From a single user to multiple users
• From predetermined paths to application-aware path
optimization

• From fixed reserved resource to dynamic resource allocation
• From simulated results to real running use cases
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Thank you!
Q & A
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QoS Metric Algebra

“Routing algebra” by Sobrinho2: (P,S,w, ◦,⊕,⪯)

• P: Set of paths
• S: Range of a metric
• w : P 7→ S: Weight function
• ◦ : P× P 7→ P: Concatenation operator
• ⊕ : S× S 7→ S: Logical “plus” operator
• ⪯: S× S 7→ {0,1}: Logical “compare” operator

• ⊗ : R× S 7→ S: Logical “multiply” operator

2João Luís Sobrinho. “Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet”. In: IEEE/ACM
Transactions on Networking (TON) 10.4 (2002). 00328, pp. 541–550.



QoS Metric Algebra

Variant metric algebra: (P,S,w, ◦,⊕,⪯,⊗)

• P: Set of paths
• S: Range of a metric
• w : P 7→ S: Weight function
• ⊕ : S× S 7→ S: Logical “plus” operator
• ⊗ : R× S 7→ S: Logical “multiply” operator



QoS Metric Algebra Examples

Table 1: The Variant Routing Metric Algebra.

S Weight function (w) w(p1) w(p2) w(p1 ◦ p2) N ⊗ w(p1) Identity (e) Zero (0)

N+ Hopcount h1 h2 h1 + h2 N · h1 0 +∞

R+ Bandwidth b1 b2 min(b1, b2) b1 +∞ 0

R+ Delay d1 d2 d1 + d2 N · d1 0 +∞

[0, 1] Loss rate r1 r2 1 − (1 − r1)(1 − r2) 1 − (1 − r1)N 0 1
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