NOVA: Towards On-Demand Equivalent Network View Abstraction for Network Optimization

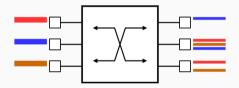
Kai Gao²³, Qiao Xiang¹³, Xin Wang¹³, Yang Richard Yang¹³ and Jun Bi²

¹Department of Computer Science, Tongji University ²Institute for Network Science and Cyberspace, Tsinghua University ³Department of Computer Science, Yale University

- 1. Introduction
- 2. NOVA
- 3. Summary

Introduction

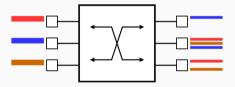
• Three requests: red (r), blue (b) and brown (y)



A Motivating Example

- Three requests: red (r), blue (b) and brown (y)
- Private QoS function:

• Local preference: red request is from a privileged client



- Centralized optimization framework for SDN
 - Example: SOL¹
 - Limitation: Require applications to submit private information

¹Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. "Simplifying Software-Defined Network Optimization Using SOL", NSDI'16

- Centralized optimization framework for SDN
- Global view
 - Example: NOX¹
 - Limitation: Contain redundant information even after filtering, leak sensitive network information (topology),

¹Natasha Gude et al. "NOX: towards an operating system for networks", SIGCOMM CCR'08

- Centralized optimization framework for SDN
- Global view
- One-Big Switch¹
 - Example: CoFlow², VL2³
 - Limitation: Assume no bottleneck inside the network, cannot present end-to-end information

¹Nanxi Kang et al. "Optimizing the "one big switch" abstraction in software-defined networks", CoNEXT'13
²Mosharaf Chowdhury and Ion Stoica. "Coflow: A networking abstraction for cluster applications", HotNet'12
³Albert Greenberg et al. "VL2: a scalable and flexible data center network", SIGCOMM'09

- Centralized optimization framework for SDN
- Global view
- One-Big Switch
- End-to-end map abstraction
 - Example: ALTO¹
 - Limitation: Cannot present shared bottleneck

¹Richard Alimi, Yang Yang, and Reinaldo Penno. "Application-layer traffic optimization (ALTO) protocol", RFC 7285

Requirements:

- Constructed on demand
- Without loss of information
- Protecting sensitive information
- Compact in size

Requirements:

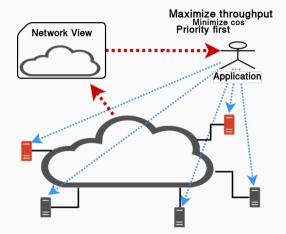
- Constructed on demand
- Without loss of information
- Protecting sensitive information
- Compact in size

The NOVA abstraction is

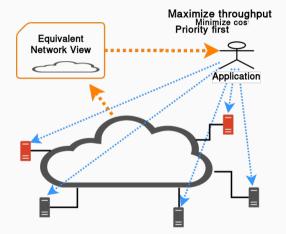
- Based on flow queries
- Using equivalent transformation
- Using irreversible transformation
- Reducing redundant information as mush as possible

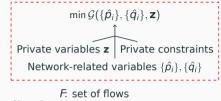
NOVA

 Observation: Applications use network views to make traffic scheduling decisions to achieve a certain objective.



- Observation: Applications use network views to make traffic scheduling decisions to achieve a certain objective.
- Conclusion: Equivalent network views allow applications to always make the *same* optimal decision.





Application

Network

Application objective function template:

 $\min \mathcal{E}(\{\hat{p}_i\}, \{\hat{q}_i\})$

Routing policies, topology, etc.

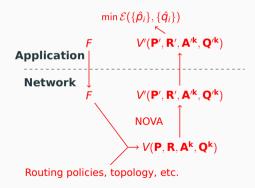
F: set of flows **Application**

Network

Application objective function template:

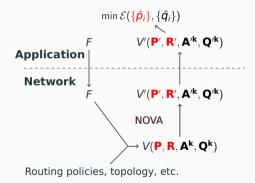
 $\min \mathcal{E}(\{\hat{p}_i\}, \{\hat{q}_i\})$

Routing policies, topology, etc.



Network processing:

- Take flow request *F* and return a subset of global view *V*
- NOVA kicks in and produces the equivalent view V'

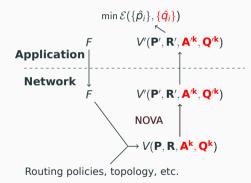


End-to-End metrics (\hat{p}_i) :

- Accumulated along the forwarding paths
- Values are (statistically) independent of flows
- Based on Variant QoS metric algebra: extended from Sobrinho's QoS algebra², relaxed path concatenation to linearize QoS metrics

 $\hat{\mathbf{P}} = \mathbf{R} \times \mathbf{P}$

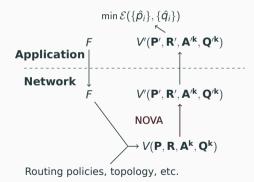
² João Luís Sobrinho. "Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet", TON'02



Shared resources (\hat{q}_i) :

- Constrained by resources available on the forwarding paths
- Shared by different flows

$$\mathbf{A}^k imes \hat{\mathbf{q}}^k \leq \mathbf{q}^k$$



Common constraints:

$$\textbf{R} \geq 0, \textbf{A}^k \geq 0, \textbf{q}^k \geq 0, \textbf{\hat{q}}^k \geq 0$$

Equivalent Network View

A declarative definition (what we want to achieve):

• Applications can use the view to make the same traffic scheduling decision.

Equivalent Network View

A declarative definition (what we want to achieve):

• Applications can use the view to make the same traffic scheduling decision.

A mathematical definition (how we verify the equivalence):

• End-to-End metrics:

$$\mathbf{R_1} \times \mathbf{P_1} = \mathbf{R_2} \times \mathbf{P_2}$$

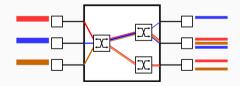
• Shared resources:

$$F_1^k = \left\{ \mathbf{x} \mid \mathbf{A_1^k x} \leq \mathbf{q_1^k}
ight\} = \left\{ \mathbf{x} \mid \mathbf{A_2^k x} \leq \mathbf{q_2^k}
ight\} = F_2^k$$

Basic Equivalent Transformations

Network view used in the example:

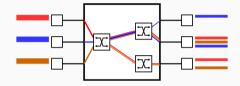
R(A ^T)	e_1	e ₂	e ₃	e_4	e_5	e_6	e7	e_8
<i>r</i> ₁	1	0	0	1	0	0	1	0
r ₂	1	0	0	0	1	0	0	1
b_1	0	1	0	1	0	1	0	0
b ₂	0	1	0	1	0	0	1	0
<i>y</i> ₁	0	0	1	1	0	0	1	0
<i>y</i> ₂	0	0	1	0	1	0	0	1
hop	1	1	1	1	1	1	1	1
bw	100	100	100	150	150	70	70	70

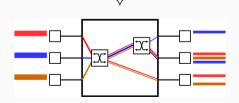


Basic Transformation Example: Aggregation

- Equivalence condition: Same row vector $\mathbf{R}_{j}^{T} \And \mathbf{A}_{j}^{k}$
- Merge columns with variant QoS metric algebra

R(A ^T)	e_1	e ₂	e ₃	e_4	e ₅	e_6	e ₇	e ₈
r ₁	1	0	0	1	0	0	1	0
r ₂	1	0	0	0	1	0	0	1
b_1	0	1	0	1	0	1	0	0
b ₂	0	1	0	1	0	0	1	0
<i>Y</i> ₁	0	0	1	1	0	0	1	0
У2	0	0	1	0	1	0	0	1
hop	1	1	1	1	1	1	1	1
bw	100	100	100	150	150	70	70	70

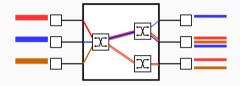


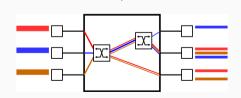


Basic Transformation Example: Aggregation

- Equivalence condition: Same row vector $\mathbf{R}_{j}^{T} \And \mathbf{A}_{j}^{k}$
- Merge columns with variant QoS metric algebra

R(A ^T)	e_1	e ₂	e ₃	e_4	e_6	e ₇	e ₈
r ₁	1	0	0	1	0	1	0
r ₂	1	0	0	0	0	0	1
b_1	0	1	0	1	1	0	0
b ₂	0	1	0	1	0	1	0
y_1	0	0	1	1	0	1	0
<i>Y</i> ₂	0	0	1	0	0	0	1
hop	1	1	1	1	1	1	2
bw	100	100	100	150	70	70	70

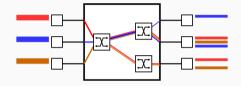


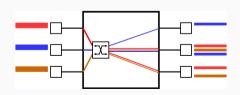


Basic Transformation Example: Decomposition

- Equivalence condition: $\mathbf{A}_{j}^{k}\mathbf{x} \leq q_{j}^{k}$ is redundant and $\mathbf{R}_{j} = \sum_{r} \mathbf{R}_{j}^{(r)}$, $\mathbf{A}_{j}^{k} = \sum_{r} \mathbf{A}_{j}^{k(r)}$
- Split columns so that new columns can be aggregated

R(A ^T)	e_1	e ₂	e ₃	e ₄	e ₆	e ₇	e ₈
r ₁	1	0	0	1	0	1	0
r ₂	1	0	0	0	0	0	1
b_1	0	1	0	1	1	0	0
b ₂	0	1	0	1	0	1	0
y_1	0	0	1	1	0	1	0
У2	0	0	1	0	0	0	1
hop	1	1	1	1	1	1	2
bw	100	100	100	150	70	70	70

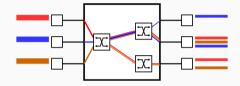


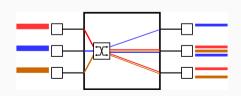


Basic Transformation Example: Decomposition

- Equivalence condition: $\mathbf{A}_{j}^{k}\mathbf{x} \leq q_{j}^{k}$ is redundant and $\mathbf{R}_{j} = \sum_{r} \mathbf{R}_{j}^{(r)}$, $\mathbf{A}_{j}^{k} = \sum_{r} \mathbf{A}_{j}^{k(r)}$
- Split columns so that new columns can be aggregated

R(A ^T)	e_1	e ₂	e ₃	e_4^1	e_4^2	e ₆	e ₇	e ₈
r_1	1	0	0	0	1	0	1	0
r ₂	1	0	0	0	0	0	0	1
b_1	0	1	0	1	0	1	0	0
b ₂	0	1	0	0	1	0	1	0
<i>Y</i> ₁	0	0	1	0	1	0	1	0
У2	0	0	1	0	0	0	0	1
hop	1	1	1	1	1	1	1	2
bw	100	100	100	150	150	70	70	70

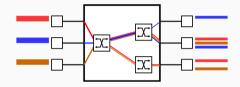


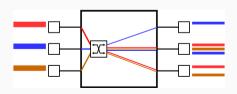


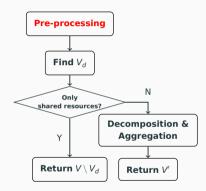
Basic Transformation Example: Decomposition

- Equivalence condition: $\mathbf{A}_{j}^{k}\mathbf{x} \leq q_{j}^{k}$ is redundant and $\mathbf{R}_{j} = \sum_{r} \mathbf{R}_{j}^{(r)}$, $\mathbf{A}_{j}^{k} = \sum_{r} \mathbf{A}_{j}^{k(r)}$
- Split columns so that new columns can be aggregated

R(A ^T)	e ₁	e ₂	e ₃	e_6	e ₇	e ₈
r_1	1	0	0	0	1	0
r ₂	1	0	0	0	0	1
b_1	0	1	0	1	0	0
b ₂	0	1	0	0	1	0
<i>y</i> ₁	0	0	1	0	1	0
<i>Y</i> ₂	0	0	1	0	0	1
hop	1	1	1	2	2	2
bw	100	100	100	70	70	70

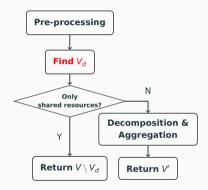






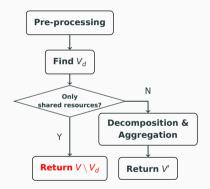
Aggregate columns with the same row vector (R_i^T, A_j^k)

- A pre-processing step
- Avoid corner case in redundancy check (identical constraints)



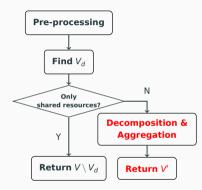
Find decomposable columns V_d

- Equivalent to finding redundant linear constraints
- Well-studied problem



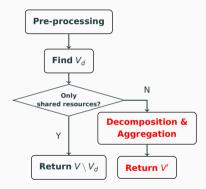
Check if only shared resources are requested

• Equivalent to One-big switch abstraction if no bottlenecks are within the network



Decompose $\forall v \in V_d$ with unit basis

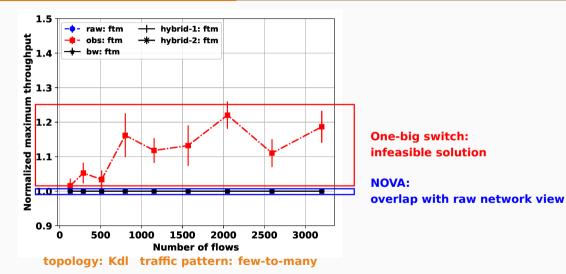
- Bounded size $(|V| |V_d| + |F|)$
- Low computation overhead $O(|V_d||F|)$
- Equivalent to end-to-end abstraction if $V = V_d$ (only end-to-end metrics are requested)



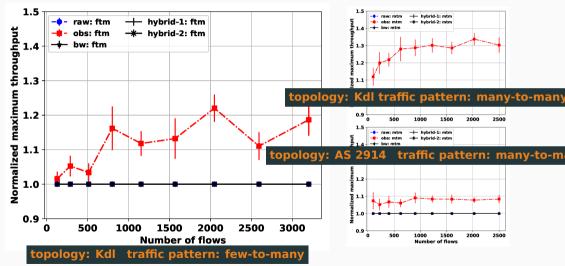
Techniques to improve performance:

- Reduce space overhead: Aggregate the new columns immediately
- Leverage parallel processing: Use Map-Reduce-like divide-and-conquer

Evaluation: Verifying Equivalence



Evaluation: Verifying Equivalence



- Topology
- Traffic pattern
- Number of flows
- Redundancy check algorithm

- Topology
- Traffic pattern
- Number of flows
- Redundancy check algorithm

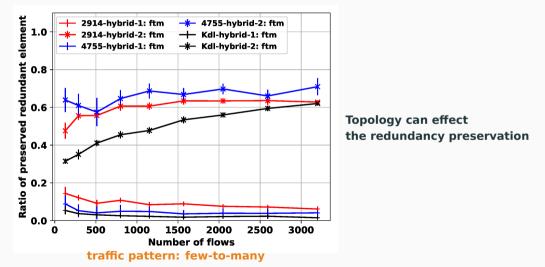
Determined by the nature of the network and the application

- Topology
- Traffic pattern
- Number of flows
- Redundancy check algorithm

Can be controlled by NOVA

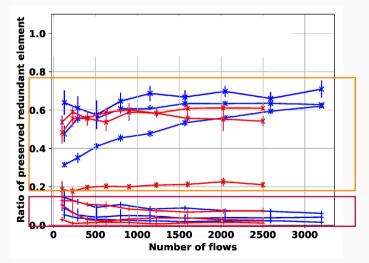
Evaluation: Topology

Normalized redundancy preservation



Evaluation: Traffic Pattern

Redundancy preservation

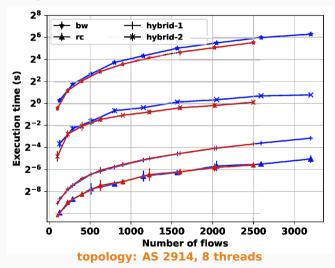


Relaxed redundancy check: Many-to-many has better reduction ratio than few-to-many

Strict redundancy check: No significant difference

Evaluation: Traffic Pattern

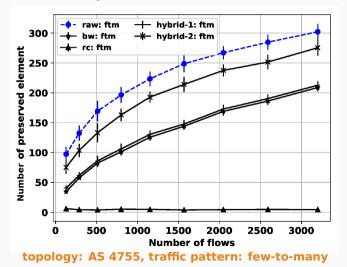
Computation overhead



Few-to-many and many-to-many patterns have no significant difference

Evaluation: Number of flows

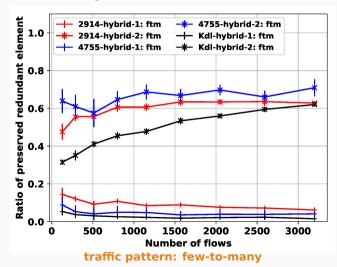
Redundancy reduction



More flows, more preserved elements more information leaked

Evaluation: Number of flows

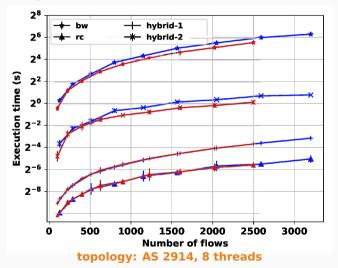
Redundancy reduction



Effect on reduction ratio depends on topology and redundancy check algorithm

Evaluation: Number of flows

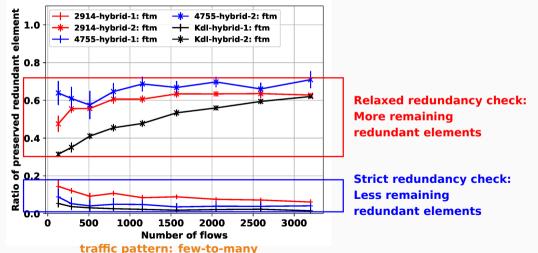
Computation overhead



More flows, larger computation time

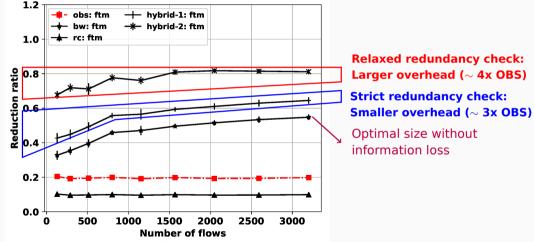
Evaluation: Redundancy Check Algorithm

Normalized redundancy preservation



Evaluation: Redundancy Check Algorithm

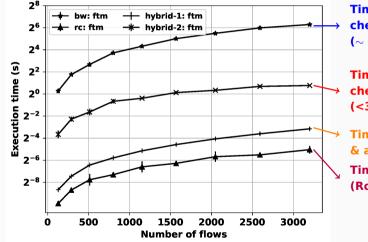
Normalized communication overhead



topology: AS 2914, traffic pattern: few-to-many

Evaluation: Redundancy Check Algorithm

Computation overhead



Time of strict redundancy check algorithm (\sim 5s for \sim 500 flows)

Time of relaxed redundancy check algorithm (<3s for ~3000 flows)

Time of decomposition & aggregation

Time to compute P × R (Routing cost only)

topology: AS 2914, traffic pattern: few-to-many, 8 threads

- Topology
- Traffic pattern
- Number of flows
- Redundancy check algorithm
- Can effect the reduction ratio and computation time
- Usually does not change

- Topology
- Traffic pattern
- Number of flows
- Redundancy check algorithm
- Mostly effect the relaxed redundancy check algorithm
- No significant correlations on computation time
- Usually does not change

- Topology
- Traffic pattern
- Number of flows
- Redundancy check algorithm
- More flows, more information leaked, more communication overhead and computation time
- Mostly effect the relaxed redundancy check algorithm

- Topology
- Traffic pattern
- Number of flows
- Redundancy check algorithm
- Strict redundancy check: Better privacy protection, less communication overhead, more computation overhead
- Relaxed redundancy check: More information leaked, more communication overhead, less computation overhead

Summary

In this paper, we

- Identify the problem of providing on-demand network views and the limitations of existing works
- Extend the QoS metric algebra and model the Application-Network Collaborative Optimization
- Define equivalent network view and design novel and efficient algorithms to construct it

Evaluations show that:

- NOVA produces equivalent network view
- NOVA can effectively reduce redundant information and communication overhead with strict redundancy check algorithm
- NOVA can differentiate privacy by choosing different redundancy check algorithms and limiting the number of flows in a request

- From a single user to multiple users
- From predetermined paths to application-aware path optimization
- From fixed reserved resource to dynamic resource allocation
- From simulated results to real running use cases

Thank you! Q & A

QoS Metric Algebra

"Routing algebra" by Sobrinho²: $(P, S, w, \circ, \oplus, \preceq)$

- P: Set of paths
- S: Range of a metric
- $w: P \mapsto S$: Weight function
- $\circ: P \times P \mapsto P$: Concatenation operator
- $\oplus: S \times S \mapsto S$: Logical "plus" operator
- $\preceq: S \times S \mapsto \{0, 1\}$: Logical "compare" operator

² João Luís Sobrinho. "Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet". In: *IEEE/ACM Transactions on Networking (TON)* 10.4 (2002). 00328, pp. 541–550.

Variant metric algebra: $(P, S, w, \circ, \oplus, \preceq, \otimes)$

- P: Set of paths
- S: Range of a metric
- $w: P \mapsto S$: Weight function
- $\oplus: S \times S \mapsto S$: Logical "plus" operator
- $\otimes : \mathbb{R} \times S \mapsto S$: Logical "multiply" operator

Table 1: The Variant Routing Metric Algebra.

S	Weight function (w)	$w(p_1)$	$w(p_2)$	$w(p_1 \circ p_2)$	$N\otimes w(p_1)$	ldentity (<i>e</i>)	Zero (0)
\mathbb{N}^+	Hopcount	h ₁	h ₂	$h_{1} + h_{2}$	$N \cdot h_1$	0	$+\infty$
\mathbb{R}^+	Bandwidth	b ₁	b ₂	$\min(b_1, b_2)$	b_1	$+\infty$	0
\mathbb{R}^+	Delay	dı	d ₂	$d_1 + d_2$	$N \cdot d_1$	0	$+\infty$
[0, 1]	Loss rate	<i>r</i> ₁	<i>r</i> ₂	$1 - (1 - r_1)(1 - r_2)$	$1 - (1 - r_1)^N$	0	1