NOVA: ,
Towards On-Demand Equivalent Network View
Abstraction for Network Optimization

Kai Gao?3, Qiao Xiang'3, Xin Wang!3, Yang Richard Yang'3 and Jun Bi?

1Department of Computer Science, Tongji University
2|nstitute for Network Science and Cyberspace, Tsinghua University
3Department of Computer Science, Yale University

Table of Contents

1. Introduction
2. NOVA

3. Summary

Introduction

A Motivating Example

* Three requests: red (r), blue (b) and
brown (y)

[— —

— o=

e —O——

A Motivating Example

* Three requests: red (r), blue (b) and

brown (y)
¢ Private QoS function: — | I g —
! m— X =
a x hopcount + p=—F—— — L =

* Local preference: red request is from a
privileged client

e Centralized optimization framework for SDN

» Example: SOL!
e Limitation: Require applications to submit private information

1victor Heorhiadi, Michael K Reiter, and Vyas Sekar. “Simplifying Software-Defined Network Optimization Using SOL”, NSDI'16

* Centralized optimization framework for SDN
* Global view

¢ Example: NOX!
e Limitation: Contain redundant information even after filtering, leak
sensitive network information (topology),

INatasha Gude et al. “NOX: towards an operating system for networks”, SIGCOMM CCR’08

* Centralized optimization framework for SDN

* Global view
« One-Big Switch!
e Example: CoFlow?, VL23

¢ Limitation: Assume no bottleneck inside the network, cannot present
end-to-end information

INanxi Kang et al. “Optimizing the “one big switch” abstraction in software-defined networks”, CONEXT'13
2Mosharaf Chowdhury and lon Stoica. “Coflow: A networking abstraction for cluster applications”, HotNet'12
3Albert Greenberg et al. “VL2: a scalable and flexible data center network”, SIGCOMM’09

Centralized optimization framework for SDN

Global view
* One-Big Switch
End-to-end map abstraction

« Example: ALTO?!
» Limitation: Cannot present shared bottleneck

1Richard Alimi, Yang Yang, and Reinaldo Penno. “Application-layer traffic optimization (ALTO) protocol”, RFC 7285

Requirements:

* Constructed on demand

* Without loss of information

* Protecting sensitive information

e Compactin size

Requirements: The NOVA abstraction is
* Constructed on demand * Based on flow queries
* Without loss of information * Using equivalent transformation

* Protecting sensitive information ¢ Using irreversible transformation

* Compact in size * Reducing redundant information
as mush as possible

NOVA

Key Observation

Maximize throughput
Minimjze cos'

Network View Priority first
* Observation: Applications use sesssssscansunns)/’i
network views to make traffic Q m..;-'-‘;gppi.i.c_aﬁon
scheduling decisions to achieve a | S N

certain objective.

Key Observation

Maximize throughput
Minimize cos'

Priority first

. . . Equivalent
* Observation: Applications use Network View === s sssswnsnnsns > /’i
network views to make traffic e ation
scheduling decisions to achieve a » i

certain objective.

* Conclusion: Equivalent network
views allow applications to always
make the same optimal decision.

Application-Network Collaborative Optimization Model

minG({p}. {d1}.2) i

; : Application objective function
| Private variables z | Private constraints template.
i Network-related variables {6;},{g;}
F: set of flows ming({ﬁi}y{ai})
Application

Network

Routing policies, topology, etc.

Application-Network Collaborative Optimization Model

Application objective function
o template:
min £({0i}, {Gi})

F: set of flows ming({ﬁi}y{ai})
Application

Network

Routing policies, topology, etc.

Application-Network Collaborative Optimization Model

min E({pi},{Gi})

~
F \//(P/7 R/,A/k7 Q/k)
Application‘ {
Network
F V/(P/, R/A, A/k: Qlk)
NOVA [

— V(P,R, A, Q%)

Routing policies, topology, etc.

Network processing:

* Take flow request F and return a
subset of global view V

* NOVA kicks in and produces the
equivalent view V'

Application-Network Collaborative Optimization Model

End-to-End metrics (p;):

i ¢ Accumulated along the forwardin
min£({pi},{Gi}) 9 9

Ny paths
F V/(P/7 R/,A,k7 Qlk) R . . .
P plication Values are (statistically) independent
7777777777777777777777777777 { of flows
Network F V(P R, A% Q) * Based on Variant QoS metric algebra:
extended from Sobrinho’s QoS
RO [algebra?, relaxed path concatenation
V(P,R, Ak Q) to linearize QoS metrics
Routing policies, topology, etc. P=RxP

2Joe"\o Luis Sobrinho. “Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet”, TON'02

Application-Network Collaborative Optimization Model

Shared resources (§;):

min (61}, {G1) » Constrained by resources

~ available on the forwarding paths
F V/(P/7 RI,A/k7Q/k))
Application‘ { * Shared by different flows
Network A x f]k < qk
F V/(P/, R/,A/k,Q/k)
NOVA [
V(P,R, Ak QK)

Routing policies, topology, etc.

Application-Network Collaborative Optimization Model

Common constraints:

min (P}, (D) R>0,A“>0,g>0,>0
F V/(P/7 RI,A/k7Q/k)
Application‘ {
Network
F V/(P/, R/,A/k7Q/k)
NOVA [
V(P.R,A*,QY)

Routing policies, topology, etc.

Equivalent Network View

A declarative definition (what we want to achieve):

* Applications can use the view to make the same traffic scheduling
decision.

Equivalent Network View

A declarative definition (what we want to achieve):

* Applications can use the view to make the same traffic scheduling
decision.

A mathematical definition (how we verify the equivalence):

¢ End-to-End metrics:
R]_ X P]_ = Rz X Pz

¢ Shared resources:
Fi = {x|Atx < af| = {x | Abx < df} = F}

Basic Equivalent Transformations

NOVA
\/(p7 R, Ak, Qk) V/(P/, R’, A/k, Q/k)
A series of basic transformations

Network view used in the example:

R(AT) e; e e3 ey es eg ey eg
n 1 0 0 1 0 0 1 0 r— —]
r 1 0 0 0 1 0 0 1 =1 —
by 0 1 0 1 0 1 0 0 —
b, 0 1 0 1 0 0 1 0 —
v 0 0 1 1 0 0 1 0 -
Y2 0 0 1 0 1 0 0 1
hop 1 1 1 1 1 1 1 1
bw 100 100 100 150 150 70 70 70

Basic Transformation Example: Aggregation

* Equivalence condition: Same row vector
R & A
J J
* Merge columns with variant QoS metric
algebra
R(AT) ey ey e3 ey eg ey eg
r 1 0 0 1 0 1 0
ry 1 0 0 0 0 0 1
by 0 1 0 1 1 0 0
by 0 1 0 1 0 1 0
% 0 0 1 1 0 1 0
Y2 0 0 1 0 0 0 1
hop 1 1 1 1 1 1 1
bw 100 100 100 150 70 70 70

Basic Transformation Example: Aggregation

* Equivalence condition: Same row vector
R & A
J J
* Merge columns with variant QoS metric
algebra
R(AT) e; ey e3 ey eg ez eg
r 1 0 0 1 0 1 0
r 1 0 0 0 0 0 1
by 0 1 0 1 1 0 0
by 0 1 0 1 0 1 0
v1 0 0 1 1 0 1 0
Y2 0 0 1 0 0 0 1
hop 1 1 1 1 1 1 2
bw 100 100 100 150 70 70 70

Basic Transformation Example: Decomposition

 Equivalence condition: Aj’.(x < qj’.< is
redundant and R; =3, R](f), Ak = ZrAkj(f)

* Split columns so that new columns can
be aggregated

R(AT) e) es € | es e e \U’

rn 1 0 0 0 1 o0

ry 1 0 0 o 0 1

by 0 1 0 1 0 o —] =
b, 0 1 0 0 1 0 _/

¥1 0 0 1 0 1 0 — X ———
Vs 0 0 1 0 0 1 /—'\
hop 1 1 1 1 1 2 — D_ _D —
bw 100 100 100 70 70 70

Basic Transformation Example: Decomposition

 Equivalence condition: Aj’.(x < qj’F is
redundant and R; = Y, R{", Ak = >, Ak

* Split columns so that new columns can
be aggregated

R(AT) e1 e es | e e e e eg \U/
rn 1 0 0 0 1 o0
r 1 0 0 o 0 1
by 0 1 0 1 0 o w—]| =
b, 0 1 0 0 1 0 _/
y1 0 0 1 0o 1 o — X ———
v, 0 0 1 0o 0o 1 /—'\
hop 1 1 1 1 1 2 — D_ _D :
bw 100 100 100 70 70 70

Basic Transformation Example: Decomposition

 Equivalence condition: Aj’.(x < qj’.< is
redundant and R; =3, Rj(f), Ak = ZrAkj(f)

* Split columns so that new columns can
be aggregated

R(AT) €1 €2 €3 € €7 &g \U’

mn 1 0 0 0 1 0

ry 1 0 0 0 0 1

by 0 1 0 1 0 0 —] '
by 0 1 0 0 1 0 \1_/

y1 0 0 1 0 1 0 — X —
Vs 0 0 1 0 o0 1 /—'\
hop 1 1 - — — |
bw 100 100 100 70 70 70

Overall Algorithm

Pre-processing

Aggregate columns with the same row
vector (R/,A)

e A pre-processing step

Only
shared resources?

Decomposition &
Aggregation

1

Return V\ V4] [Return V']

* Avoid corner case in redundancy check
(identical constraints)

Overall Algorithm

Only
shared resources?

Decomposition &
Aggregation

1

Return V\ V4] [Return V']

Find decomposable columns V,

* Equivalent to finding redundant linear
constraints

* Well-studied problem

Overall Algorithm

Only
shared resources?

Decomposition &
Aggregation

1

Return V\ Vy] [Return V']

Check if only shared resources are
requested

* Equivalent to One-big switch abstraction
if no bottlenecks are within the network

Overall Algorithm

Only
shared resources?

* Equivalent to end-to-end abstraction if
o V = V4 (only end-to-end metrics are

T requested)
Return V\ V4] [Return V/]

Decompose Vv € V4 with unit basis
* Bounded size (|V| — |Vq4| + |F])
* Low computation overhead O(|V4||F]|)

Overall Algorithm

Only
shared resources?

Decomposition &
Aggregation

1

Return V\ V4] [Return V']

Techniques to improve performance:

* Reduce space overhead: Aggregate the
new columns immediately

* Leverage parallel processing: Use
Map-Reduce-like divide-and-conquer

Evaluation: Verifying Equivalence

1.5

-¢- raw: ftm
- obs: ftm
—4— bw: ftm

L
»

=
w
,

—}— hybrid-1: ftm
=¥ hybrid-2: ftm

Normalized maximum throughput
=
N

4
©

i

500

(-]

topology: Kdl

1000 1500 2000 2500 3000
Number of flows

traffic pattern: few-to-many

One-big switch:
infeasible solution

NOVA:
overlap with raw network view

10

Evaluation: Verifying Equivalence

Normalized maximum throughput

1.5 e ¢ raw:mtm — hybrid-1: mtm
-®- raw: ftm —— hybrid-1: ftm § |4 obsimtm e nybria2: mim
—#i- obs: ftm =¥ hybrid-2: ftm g
1.4 { —— bw: ftm 1.
E
H
£
1.3 3
1!2 7 ‘/‘+\~\ o 500 1000 1500 2000 2500
. /'/ .\ e 15 -#- raw:mtm — hybrid-1: mtm
/ ~. J— N\ -/'/ H _—:_ :hs-:-n;tm ¥ hybrid-2: mtm
1.1- / '
=1
M £
L—L‘—. E
1.0 b \ £
0.9 - T T T T T T =§
0 500 1000 1500 2000 2500 3000 0.9

Number of flows

500 1000 1500

Number of flows

2000 2500

10

Evaluation: Effective Factors

Topology

Traffic pattern

Number of flows

Redundancy check algorithm

11

Evaluation: Effective Factors

Topology

Traffic pattern

Number of flows

Redundancy check algorithm

Determined by the nature of the network and the application

11

Evaluation: Effective Factors

Topology

Traffic pattern

Number of flows

Redundancy check algorithm

Can be controlled by NOVA

11

Evaluation: Topology

Normalized redundancy preservation

Ratio of preserved redundant element

1.0

0.8 -

0.6 1

0.4 -

0.2 -

—}— 2914-hybrid-1: ftm
=¥ 2914-hybrid-2: ftm
—— 4755-hybrid-1: ftm

—¥— 4755-hybrid-2: ftm
—— Kdi-hybrid-1: ftm
—¥— Kdl-hybrid-2: ftm

—t

1
—

0.0

500

1000 1500 2000 2500

Number of flows

3000

Topology can effect
the redundancy preservation

12

Evaluation: Traffic Pattern

Redundancy preservation

1.0

Many-to-many

°
)

few-to-many

e
F

Ratio of preserved redundant element

No significant difference

' , - Strict redundancy check:

0 500 1000 1500 2000 2500 3000
Number of flows 13

Evaluation: Traffic Pattern

Computation overhead

25

—— bw —+— hybrid-1
264 —— rc —¥— hybrid-2 e
o 4_’___,_3—'.;:::'

Few-to-many and
many-to-many patterns have
no significant difference

Execution time (s)
N

o 500 1000 1500 2000 2500 3000
Number of flows

topology: AS 2914, 8 threads 14

Evaluation: Number of flows

Redundancy reduction

-®- raw: ftm —}— hybrid-1: fim
3007 44— bw: ftim —k— hybrid-2: ftm +__,_——‘
—4—rcftm 4 __-="T

250 -

200 More flows,

more elements

150 . .
more information leaked

100+

Number of preserved element
1]
©

b p——— g p————)\

(-]

O

500 1000 1500 2000 2500 3000
Number of flows 15

Evaluation: Number of flows

Redundancy reduction

—}— 2914-hybrid-1: ftm
1.0 | = 2914-hybrid-2: ftm
—— 4755-hybrid-1: ftm
0.8
0.6 1

0.4 -

0.2 -

Ratio of preserved redundant element

—¥— 4755-hybrid-2: ftm
—— Kdi-hybrid-1: ftm
—¥— Kdl-hybrid-2: ftm

—t

1
—

0.0 +———

0 500 1000 1500 2000 2500
Number of flows

3000

15

Evaluation: Number of flows

Computation overhead

25
—— bw —+— hybrid-1
264 —— rc —¥— hybrid-2 e
o) 4_____,_;:-"29
22 4

More flows,
larger computation time

Execution time (s)

o 500 1000 1500 2000 2500 3000
Number of flows

topology: AS 2914, 8 threads 16

Evaluation: Redundancy Check Algorithm

Normalized redundancy preservation

Ratio of preserved redundant element

oy
()

°
®

—— 2914-hybrid-1: ftm
=¥ 2914-hybrid-2: ftm
—— 4755-hybrid-1: ftm

—¥— 4755-hybrid-2: ftm
—— Kdi-hybrid-1: ftm
—¥— Kdl-hybrid-2: ftm

0.4 -

0,2 -

—

g

500 1000

1500

2000 2500

Number of flows

3000

Relaxed redundancy check:
More remaining
redundant elements

Strict redundancy check:
Less remaining
redundant elements

17

Evaluation: Redundancy Check Algorithm

Normalized communication overhead
1.2

—#- obs: ftm —|— hybrid-1: ftm
—4— bw: ftm =¥ hybrid-2: ftm
1.0 { —&— rc: ftm

Relaxed redundancy check:

P S o o= 8 L L
E //: Strict redundancy check:
B Smaller overhead (~ 3x OBS)
5 N
E . \ Optimal size without
information loss
0.2 { Bpgpg—A— gl —— e —— o — -

0.0 - T T T y T T
U] 500 1000 1500 2000 2500 3000

Number of flows

topology: AS 2914, traffic pattern: few-to-many 18

Evaluation: Redundancy Check Algorithm

Computation overhead
28

Time of strict redundancy
check algorithm
(~ 5s for ~500 flows)

—— bw: ftm —— hybrid-1: ftm
26 1 —&— rc: ftm =¥~ hybrid-2: ftm

L 4

24_

22 Time of relaxed redundancy

—~ check algorithm
(<3s for ~3000 flows)

Execution time (s)
N
N

2—6
\ Time to compute P xR
27%1 (Routing cost only)

0 500 1000 1500 2000 2500 3000

Number of flows
19

Evaluation: Effective Factors

Topology

Traffic pattern

Number of flows

Redundancy check algorithm

Can effect the reduction ratio and computation time

Usually does not change

20

Evaluation: Effective Factors

* Topology

* Traffic pattern

* Number of flows

* Redundancy check algorithm

* Mostly effect the relaxed redundancy check algorithm
* No significant correlations on computation time
* Usually does not change

20

Evaluation: Effective Factors

* Topology

* Traffic pattern

* Number of flows

* Redundancy check algorithm

¢ More flows, more information leaked, more communication overhead
and computation time

* Mostly effect the relaxed redundancy check algorithm

20

Evaluation: Effective Factors

* Topology
* Traffic pattern
* Number of flows

* Redundancy check algorithm

» Strict redundancy check: Better privacy protection, less
communication overhead, more computation overhead

* Relaxed redundancy check: More information leaked, more
communication overhead, less computation overhead

20

Summary

Summary and Future Work

In this paper, we

* |dentify the problem of providing on-demand network views and the
limitations of existing works

* Extend the QoS metric algebra and model the Application-Network
Collaborative Optimization

* Define equivalent network view and design novel and efficient
algorithms to construct it

21

Conclusion

Evaluations show that:

* NOVA produces equivalent network view

* NOVA can effectively reduce redundant information and
communication overhead with strict redundancy check algorithm

* NOVA can differentiate privacy by choosing different redundancy
check algorithms and limiting the number of flows in a request

22

From a single user to multiple users

From predetermined paths to application-aware path
optimization

From fixed reserved resource to dynamic resource allocation
* From simulated results to real running use cases

23

Thank you!
Q&A

QoS Metric Algebra

“Routing algebra” by Sobrinho?: (P,S,w,o,®, <)

e P: Set of paths
* S: Range of a metric
* w:P~— S: Weight function
* o: P x P+~ P: Concatenation operator
* ®:5 x5+~ S: Logical “plus” operator
<:S x5~ {0,1}: Logical “compare” operator

2Joéo Luis Sobrinho. “Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet”. In: IEEE/ACM
Transactions on Networking (TON) 10.4 (2002). 00328, pp. 541-550.

QoS Metric Algebra

Variant metric algebra: (P,S,w,0,®,<,®)

* P: Set of paths

* S: Range of a metric

e w:P— S: Weight function

* $:5S x5+~ S: Logical “plus” operator

®:R xS+~ S: Logical “multiply” operator

QoS Metric Algebra Examples

Table 1: The Variant Routing Metric Algebra.

S Weight function (w) w(p1) w(py) w(p1 o p3) N ® w(py) Identity (e) Zero (0)
Nt Hopcount hy h, hy + hy N - hy 0 +00
R* Bandwidth by b, min(by, by) by +00 0
R* Delay dy d, dy +d, N - dy 0 400

[0,1] Loss rate rn r 1-(1-n)l-r) 1—-@1-r)V 0 1

	Introduction
	NOVA
	Summary
	Appendix

