
NOVA:
Towards On-Demand Equivalent Network View
Abstraction for Network Optimization

Kai Gao23, Qiao Xiang13, Xin Wang13, Yang Richard Yang13 and Jun Bi2

1Department of Computer Science, Tongji University
2Institute for Network Science and Cyberspace, Tsinghua University
3Department of Computer Science, Yale University

Table of Contents

1. Introduction

2. NOVA

3. Summary

1

Introduction

A Motivating Example

• Three requests: red (r), blue (b) and
brown (y)

• Private QoS function:

1
α× hopcount + β

bandwidth

• Local preference: red request is from a
privileged client

2

A Motivating Example

• Three requests: red (r), blue (b) and
brown (y)

• Private QoS function:

1
α× hopcount + β

bandwidth

• Local preference: red request is from a
privileged client

2

Existing Work

• Centralized optimization framework for SDN
• Example: SOL1
• Limitation: Require applications to submit private information

• Global view
• One-Big Switch
• End-to-end map abstraction

1Victor Heorhiadi, Michael K Reiter, and Vyas Sekar. “Simplifying Software-Defined Network Optimization Using SOL”, NSDI’16

3

Existing Work

• Centralized optimization framework for SDN
• Global view

• Example: NOX1

• Limitation: Contain redundant information even after filtering, leak
sensitive network information (topology),

• One-Big Switch
• End-to-end map abstraction

1Natasha Gude et al. “NOX: towards an operating system for networks”, SIGCOMM CCR’08

3

Existing Work

• Centralized optimization framework for SDN
• Global view
• One-Big Switch1

• Example: CoFlow2, VL23
• Limitation: Assume no bottleneck inside the network, cannot present
end-to-end information

• End-to-end map abstraction

1Nanxi Kang et al. “Optimizing the “one big switch” abstraction in software-defined networks”, CoNEXT’13
2Mosharaf Chowdhury and Ion Stoica. “Coflow: A networking abstraction for cluster applications”, HotNet’12
3Albert Greenberg et al. “VL2: a scalable and flexible data center network”, SIGCOMM’09

3

Existing Work

• Centralized optimization framework for SDN
• Global view
• One-Big Switch
• End-to-end map abstraction

• Example: ALTO1

• Limitation: Cannot present shared bottleneck

1Richard Alimi, Yang Yang, and Reinaldo Penno. “Application-layer traffic optimization (ALTO) protocol”, RFC 7285

3

Overview

Requirements:
• Constructed on demand
• Without loss of information
• Protecting sensitive information
• Compact in size

4

Overview

Requirements:
• Constructed on demand
• Without loss of information
• Protecting sensitive information
• Compact in size

The NOVA abstraction is
• Based on flow queries
• Using equivalent transformation
• Using irreversible transformation
• Reducing redundant information
as mush as possible

4

NOVA

Key Observation

• Observation: Applications use
network views to make traffic
scheduling decisions to achieve a
certain objective.

• Conclusion: Equivalent network
views allow applications to always
make the same optimal decision.

5

Key Observation

• Observation: Applications use
network views to make traffic
scheduling decisions to achieve a
certain objective.

• Conclusion: Equivalent network
views allow applications to always
make the same optimal decision.

5

Application-Network Collaborative Optimization Model

Application
F: set of flows

minG({p̂i}, {q̂i},z)

Private variables z Private constraints
Network-related variables {p̂i}, {q̂i}

Network

Routing policies, topology, etc.

Application objective function
template:

min E({p̂i}, {q̂i})

6

Application-Network Collaborative Optimization Model

Application
F: set of flows

min E({p̂i}, {q̂i})

Network

Routing policies, topology, etc.

Application objective function
template:

min E({p̂i}, {q̂i})

6

Application-Network Collaborative Optimization Model

Application
F

min E({p̂i}, {q̂i})

V′(P′,R′,A′k,Q′k)

Network
F

Routing policies, topology, etc.

V(P,R,Ak,Qk)

V′(P′,R′,A′k,Q′k)

NOVA

Network processing:
• Take flow request F and return a
subset of global view V

• NOVA kicks in and produces the
equivalent view V′

6

Application-Network Collaborative Optimization Model

Application
F

min E({p̂i}, {q̂i})

V′(P′,R′,A′k,Q′k)

Network
F

Routing policies, topology, etc.

V(P,R,Ak,Qk)

V′(P′,R′,A′k,Q′k)

NOVANOVA

End-to-End metrics (p̂i):
• Accumulated along the forwarding
paths

• Values are (statistically) independent
of flows

• Based on Variant QoS metric algebra:
extended from Sobrinho’s QoS
algebra2, relaxed path concatenation
to linearize QoS metrics

P̂ = R× P

2João Luís Sobrinho. “Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet”, TON’02
6

Application-Network Collaborative Optimization Model

Application
F

min E({p̂i}, {q̂i})

V′(P′,R′,A′k,Q′k)

Network
F

Routing policies, topology, etc.

V(P,R,Ak,Qk)

V′(P′,R′,A′k,Q′k)

NOVANOVA

Shared resources (q̂i):
• Constrained by resources
available on the forwarding paths

• Shared by different flows
Ak × q̂k ≤ qk

6

Application-Network Collaborative Optimization Model

Application
F

min E({p̂i}, {q̂i})

V′(P′,R′,A′k,Q′k)

Network
F

Routing policies, topology, etc.

V(P,R,Ak,Qk)

V′(P′,R′,A′k,Q′k)

NOVANOVA

Common constraints:

R ≥ 0,Ak ≥ 0,qk ≥ 0, q̂k ≥ 0

6

Equivalent Network View

A declarative definition (what we want to achieve):

• Applications can use the view to make the same traffic scheduling
decision.

7

Equivalent Network View

A declarative definition (what we want to achieve):

• Applications can use the view to make the same traffic scheduling
decision.

A mathematical definition (how we verify the equivalence):

• End-to-End metrics:
R1 × P1 = R2 × P2

• Shared resources:
Fk1 =

{
x | Ak1x ≤ qk1

}
=

{
x | Ak2x ≤ qk2

}
= Fk2

7

Basic Equivalent Transformations

V(P,R,Ak,Qk) V′(P′,R′,A′k,Q′k)
NOVA

A series of basic transformations

Network view used in the example:

R(AT) e1 e2 e3 e4 e5 e6 e7 e8
r1 1 0 0 1 0 0 1 0
r2 1 0 0 0 1 0 0 1
b1 0 1 0 1 0 1 0 0
b2 0 1 0 1 0 0 1 0
y1 0 0 1 1 0 0 1 0
y2 0 0 1 0 1 0 0 1
hop 1 1 1 1 1 1 1 1
bw 100 100 100 150 150 70 70 70

8

Basic Transformation Example: Aggregation

• Equivalence condition: Same row vector
RT
j & Ak

j

• Merge columns with variant QoS metric
algebra

R(AT) e1 e2 e3 e4 e5 e6 e7 e8
r1 1 0 0 1 0 0 1 0
r2 1 0 0 0 1 0 0 1
b1 0 1 0 1 0 1 0 0
b2 0 1 0 1 0 0 1 0
y1 0 0 1 1 0 0 1 0
y2 0 0 1 0 1 0 0 1
hop 1 1 1 1 1 1 1 1
bw 100 100 100 150 150 70 70 70

⇓

8

Basic Transformation Example: Aggregation

• Equivalence condition: Same row vector
RT
j & Ak

j

• Merge columns with variant QoS metric
algebra

R(AT) e1 e2 e3 e4 e6 e7 e8
r1 1 0 0 1 0 1 0
r2 1 0 0 0 0 0 1
b1 0 1 0 1 1 0 0
b2 0 1 0 1 0 1 0
y1 0 0 1 1 0 1 0
y2 0 0 1 0 0 0 1
hop 1 1 1 1 1 1 2
bw 100 100 100 150 70 70 70

⇓

8

Basic Transformation Example: Decomposition

• Equivalence condition: Ak
j x ≤ qkj is

redundant and Rj =
∑

rR
(r)
j , Ak

j =
∑

rAk(r)
j

• Split columns so that new columns can
be aggregated

R(AT) e1 e2 e3 e4 e6 e7 e8
r1 1 0 0 1 0 1 0
r2 1 0 0 0 0 0 1
b1 0 1 0 1 1 0 0
b2 0 1 0 1 0 1 0
y1 0 0 1 1 0 1 0
y2 0 0 1 0 0 0 1
hop 1 1 1 1 1 1 2
bw 100 100 100 150 70 70 70

⇓

8

Basic Transformation Example: Decomposition

• Equivalence condition: Ak
j x ≤ qkj is

redundant and Rj =
∑

rR
(r)
j , Ak

j =
∑

rAk(r)
j

• Split columns so that new columns can
be aggregated

R(AT) e1 e2 e3 e14 e24 e6 e7 e8
r1 1 0 0 0 1 0 1 0
r2 1 0 0 0 0 0 0 1
b1 0 1 0 1 0 1 0 0
b2 0 1 0 0 1 0 1 0
y1 0 0 1 0 1 0 1 0
y2 0 0 1 0 0 0 0 1
hop 1 1 1 1 1 1 1 2
bw 100 100 100 150 150 70 70 70

⇓

8

Basic Transformation Example: Decomposition

• Equivalence condition: Ak
j x ≤ qkj is

redundant and Rj =
∑

rR
(r)
j , Ak

j =
∑

rAk(r)
j

• Split columns so that new columns can
be aggregated

R(AT) e1 e2 e3 e6 e7 e8
r1 1 0 0 0 1 0
r2 1 0 0 0 0 1
b1 0 1 0 1 0 0
b2 0 1 0 0 1 0
y1 0 0 1 0 1 0
y2 0 0 1 0 0 1
hop 1 1 1 2 2 2
bw 100 100 100 70 70 70

⇓

8

Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Aggregate columns with the same row
vector (RT

j ,A
k
j)

• A pre-processing step
• Avoid corner case in redundancy check
(identical constraints)

9

Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Find decomposable columns Vd

• Equivalent to finding redundant linear
constraints

• Well-studied problem

9

Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Check if only shared resources are
requested
• Equivalent to One-big switch abstraction
if no bottlenecks are within the network

9

Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Decompose ∀v ∈ Vd with unit basis
• Bounded size (|V| − |Vd|+ |F|)
• Low computation overhead O(|Vd||F|)
• Equivalent to end-to-end abstraction if
V = Vd (only end-to-end metrics are
requested)

9

Overall Algorithm

Pre-processing

Find Vd

Only
shared resources?

Return V \ Vd Return V′

Decomposition &
AggregationY

N

Techniques to improve performance:
• Reduce space overhead: Aggregate the
new columns immediately

• Leverage parallel processing: Use
Map-Reduce-like divide-and-conquer

9

Evaluation: Verifying Equivalence

topology: Kdl traffic pattern: few-to-many

One-big switch:
infeasible solution

NOVA:
overlap with raw network view

10

Evaluation: Verifying Equivalence

topology: Kdl traffic pattern: few-to-manytopology: Kdl traffic pattern: few-to-many

topology: Kdl traffic pattern: many-to-many

topology: AS 2914 traffic pattern: many-to-many

10

Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

11

Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

Determined by the nature of the network and the application

11

Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

Can be controlled by NOVA

11

Evaluation: Topology

Normalized redundancy preservation

traffic pattern: few-to-many

Topology can effect
the redundancy preservation

12

Evaluation: Traffic Pattern

Redundancy preservation

Strict redundancy check:
No significant difference

Relaxed redundancy check:
Many-to-many has better
reduction ratio than
few-to-many

13

Evaluation: Traffic Pattern

Computation overhead

topology: AS 2914, 8 threads

Few-to-many and
many-to-many patterns have
no significant difference

14

Evaluation: Number of flows

Redundancy reduction

topology: AS 4755, traffic pattern: few-to-many

More flows,
more preserved elements
more information leaked

15

Evaluation: Number of flows

Redundancy reduction

traffic pattern: few-to-many

Effect on reduction ratio
depends on topology and
redundancy check algorithm

15

Evaluation: Number of flows

Computation overhead

topology: AS 2914, 8 threads

More flows,
larger computation time

16

Evaluation: Redundancy Check Algorithm

Normalized redundancy preservation

traffic pattern: few-to-many

Relaxed redundancy check:
More remaining
redundant elements

Strict redundancy check:
Less remaining
redundant elements

17

Evaluation: Redundancy Check Algorithm

Normalized communication overhead

topology: AS 2914, traffic pattern: few-to-many

Relaxed redundancy check:
Larger overhead (∼ 4x OBS)

Strict redundancy check:
Smaller overhead (∼ 3x OBS)

Optimal size without
information loss

18

Evaluation: Redundancy Check Algorithm

Computation overhead

topology: AS 2914, traffic pattern: few-to-many, 8 threads

Time of strict redundancy
check algorithm
(∼ 5s for ∼500 flows)

Time of relaxed redundancy
check algorithm
(<3s for ∼3000 flows)

Time of decomposition
& aggregation
Time to compute P×R
(Routing cost only)

19

Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

• Can effect the reduction ratio and computation time
• Usually does not change

20

Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

• Mostly effect the relaxed redundancy check algorithm
• No significant correlations on computation time
• Usually does not change

20

Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

• More flows, more information leaked, more communication overhead
and computation time

• Mostly effect the relaxed redundancy check algorithm

20

Evaluation: Effective Factors

• Topology
• Traffic pattern
• Number of flows
• Redundancy check algorithm

• Strict redundancy check: Better privacy protection, less
communication overhead, more computation overhead

• Relaxed redundancy check: More information leaked, more
communication overhead, less computation overhead

20

Summary

Summary and Future Work

In this paper, we

• Identify the problem of providing on-demand network views and the
limitations of existing works

• Extend the QoS metric algebra and model the Application-Network
Collaborative Optimization

• Define equivalent network view and design novel and efficient
algorithms to construct it

21

Conclusion

Evaluations show that:

• NOVA produces equivalent network view
• NOVA can effectively reduce redundant information and
communication overhead with strict redundancy check algorithm

• NOVA can differentiate privacy by choosing different redundancy
check algorithms and limiting the number of flows in a request

22

Future Work

• From a single user to multiple users
• From predetermined paths to application-aware path
optimization

• From fixed reserved resource to dynamic resource allocation
• From simulated results to real running use cases

23

Thank you!
Q & A

23

QoS Metric Algebra

“Routing algebra” by Sobrinho2: (P,S,w, ◦,⊕,⪯)

• P: Set of paths
• S: Range of a metric
• w : P 7→ S: Weight function
• ◦ : P× P 7→ P: Concatenation operator
• ⊕ : S× S 7→ S: Logical “plus” operator
• ⪯: S× S 7→ {0,1}: Logical “compare” operator

• ⊗ : R× S 7→ S: Logical “multiply” operator

2João Luís Sobrinho. “Algebra and algorithms for QoS path computation and hop-by-hop routing in the Internet”. In: IEEE/ACM
Transactions on Networking (TON) 10.4 (2002). 00328, pp. 541–550.

QoS Metric Algebra

Variant metric algebra: (P,S,w, ◦,⊕,⪯,⊗)

• P: Set of paths
• S: Range of a metric
• w : P 7→ S: Weight function
• ⊕ : S× S 7→ S: Logical “plus” operator
• ⊗ : R× S 7→ S: Logical “multiply” operator

QoS Metric Algebra Examples

Table 1: The Variant Routing Metric Algebra.

S Weight function (w) w(p1) w(p2) w(p1 ◦ p2) N ⊗ w(p1) Identity (e) Zero (0)

N+ Hopcount h1 h2 h1 + h2 N · h1 0 +∞

R+ Bandwidth b1 b2 min(b1, b2) b1 +∞ 0

R+ Delay d1 d2 d1 + d2 N · d1 0 +∞

[0, 1] Loss rate r1 r2 1 − (1 − r1)(1 − r2) 1 − (1 − r1)N 0 1

	Introduction
	NOVA
	Summary
	Appendix

