Future Generation Computer Systems 93 (2019) 188-197

Contents lists available at ScienceDirect
FIGICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs e

Unicorn: Unified resource orchestration for multi-domain, R
geo-distributed data analytics el

a,b,*

Qiao Xiang ***, X. Tony Wang*P,]. Jensen Zhang?, Harvey Newman ¢, Y. Richard Yang *>**,

Y. Jace Liu?

2 Tongji University, China
b Yale University, United States
¢ California Institute of Technology, United States

HIGHLIGHTS

e First unified resource orchestration framework for multi-domain data analytics.
e Resource state abstraction for accurate, minimal resource information discovery.
e Prototype evaluation and full demonstration at SuperComputing 2017.

ARTICLE INFO ABSTRACT

Article history: As the data volume increases exponentially over time, data-intensive analytics benefits substantially from
Received 31 January 2018 multi-organizational, geographically-distributed, collaborative computing, where different organizations
Received in revised form 25 June 2018 contribute various yet scarce resources, e.g., computation, storage and networking resources, to collabo-
[/:\c/;?l[;)iﬁ: cl)rgllfr?gtlerl\rllcl))\fer;ggZOlS ratively collect, share and analyze extremely large amounts of data. By analyzing the data analytics trace
from the Compact Muon Solenoid (CMS) experiment, one of the largest scientific experiments in the
world, and systematically examining the design of existing resource management systems for clusters, we
show that the multi-domain, geo-distributed, resource-disaggregated nature of this new paradigm calls for
a framework to manage a large set of distributively-owned, heterogeneous resources, with the objective
of efficient resource utilization, following the autonomy and privacy of different domains, and that the
fundamental challenge for designing such a framework is: how to accurately discover and represent resource
availability of a large set of distributively-owned, heterogeneous resources across different domains with
minimal information exposure from each domain? Existing resource management systems are designed
for single-domain clusters and cannot address this challenge. In this paper, we design Unicorn, the first
unified resource orchestration framework for multi-domain, geo-distributed data analytics. In Unicorn,
we encode the resource availability for each domain into resource state abstraction, a variant of the
network view abstraction extended to accurately represent the availability of multiple resources with
minimal information exposure using a set of linear inequalities. We then design a novel, efficient cross-
domain query algorithm and a privacy-preserving resource information integration protocol to discover
and integrate the accurate, minimal resource availability information for a set of data analytics jobs across
different domains. In addition, Unicorn also contains a global resource orchestrator that computes optimal
resource allocation decisions for data analytics jobs. We implement a prototype of Unicorn and present
preliminary evaluation results to demonstrate its efficiency and efficacy. We also give a full demonstration
of the Unicorn system at SuperComputing 2017.
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

_ As the data volume increases exponentially over time, data-
* Corresponding author at: Department of Computer Science, Yale University, 51 intensive analytics benefits substantially from multi-
Prospect Street, New Haven, CT, 06511, United States. organizational, geographically-distributed, collaborative comput-

E-mail addresses: qgiao.xiang@cs.yale.edu (Q. Xiang), . R . 8 R .
13xinwang@tongji.edu.cn (X. Tony Wang), jingxuan.zhang@tongji.edu.cn 1ng, where different organizations (also called domams) contribute

(J. Jensen Zhang), newman@hep.caltech.edu (H. Newman), yry@cs.yale.edu various yet disaggregated resources, e.g., computation, storage and
(Y. Richard Yang), yang.jace.liu@linux.com (Y. Jace Liu). networking resources, to collaboratively collect, share and analyze

https://doi.org/10.1016/j.future.2018.09.048
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.09.048
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.09.048&domain=pdf
mailto:qiao.xiang@cs.yale.edu
mailto:13xinwang@tongji.edu.cn
mailto:jingxuan.zhang@tongji.edu.cn
mailto:newman@hep.caltech.edu
mailto:yry@cs.yale.edu
mailto:yang.jace.liu@linux.com
https://doi.org/10.1016/j.future.2018.09.048

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188-197 189

extremely large amounts of data. One important example of this
paradigm is the Compact Muon Solenoid (CMS) experiment at
CERN [1], one of the largest scientific experiments in the world.
The CMS data analytics system is composed of over 150 partici-
pating organizations, including national laboratories, universities
and other research institutes. By analyzing the data analytics trace
from the Compact Muon Solenoid (CMS) experiment over a 7-
day period and systematically examining the design of existing
resource management systems for clusters, we show that the
multi-domain, geo-distributed, resource-disaggregated nature of this
new paradigm calls for a framework to manage a large set of
distributively-owned, heterogeneous resources, with the objective
of efficient resource utilization, following the autonomy and privacy
of different domains.

In particular, our trace analysis shows that (1) over 35% of data
analytics jobs are remote jobs, i.e., jobs that require different types
of resources from different domains for execution; (2) the 90%
quantile of the job execution time of remote jobs is approximately
38.9% longer than that of local jobs, i.e., jobs that only require
resources from a single domain for execution; and (3) the data
transfer traffic is saturating the CMS network, leaving limited
networking resources (i.e., less than 15%) for data analytics traffic.
These observations show that resources in multi-domain, geo-
distributed analytics are highly disaggregated, i.e., unbalanced dis-
tributed across domains. Although there is much related work on
resource management for clusters and data centers, such as [2-12],
they are mostly designed for managing resources in single-domain
clusters, and cannot accomplish the aforementioned goal for multi-
domain, geo-distributed data analytics. In particular, these systems
typically adopt a graph-based abstraction to represent the resource
availability in clusters. In this abstraction, each node in the graph
is a physical node representing computation or storage resources
and each edge between a pair of nodes denotes the networking
resource connecting two physical nodes. This abstraction is inade-
quate for multi-domain, geo-distributed data analytics systems for
two reasons. First, it compromises the privacy of different domains by
revealing all the details of resources in each domain. Secondly, the
overhead to keep the resource availability graph up to date is too ex-
pensive due to the heterogeneity and dynamicity of resources from
different domains. Some systems such as HTCondor [2] adopts a
simpler abstraction that only represents computation and storage
resources in multi-domain clusters. This approach, however, leaves
the orchestration of networking resources completely to the trans-
mission control protocol (TCP), which has long been known to be-
have poorly in networks with high bandwidth-delay products in-
cluding multi-domain, geo-distributed data analytics systems, and
hence is inefficient. Through trace analysis and related work study,
we identify the fundamental design challenge for designing an
orchestration framework for multi-domain, geo-distributed data
analytics is the accurate discovery and representation of resources
across different domains with minimal information exposure.

In this paper, we design Unicorn, the first unified resource
orchestration framework for multi-domain, geo distributed data
analytics. In Unicorn, the resource availability of each domain is
abstracted into resource state abstraction, a variant of the net-
work view abstraction [13] extended to accurately represent the
availability of multiple resources with minimal information ex-
posure using a set of linear inequalities. With this intra-domain
abstraction, Unicorn uses a novel, efficient cross-domain resource
discovery component to find the accurate resource availability
information for a set of data analytics jobs across different domains
with minimal information exposure, while allowing each domain
to make and practice their own resource management strategies. In
addition, Unicorn also contains a global resource orchestrator that
computes optimal resource allocation decisions for data analytics
jobs.

The main contributions of this paper are as follows:

e we study the novel problem of resource orchestration for
multi-domain, geo-distributed data analytics and identify the
cross-domain resource discovery challenge as the fundamental
design challenge for this problem through systematic trace-
analysis and vigorously related work investigation;

e we design Unicorn, the first unified resource orchestration
framework for multi-domain, geo-distributed data analytics.
Unicorn provides the resource state abstraction for each do-
main to accurately represent its resource availability with
minimal information exposure in the form of a set of linear
equalities, a novel, efficient cross-domain resource discovery
component to provide the accurate, minimal resource avail-
ability information across different domains, and a global re-
source orchestrator to compute optimal resource allocations
for data analytics jobs;

e we implement a prototype of Unicorn and perform prelim-
inary evaluations to demonstrate its efficiency and efficacy.
We also present a full demonstration of Unicorn at Super-
Computing 2017.

The rest of the paper is organized as follows. We analyze the
data analytics trace of the CMS experiment, discuss the inadequacy
of existing resource management systems and identify the key
design challenge for multi-domain, geo-distributed data analytics
systems in Section 2. We introduce the system setting and give
an overview of the Unicorn framework in Section 3. We then
present the details of two key components of Unicorn, cross-
domain resource discovery and representation and global resource
orchestration, in Section 4 and 5, respectively. We discuss the
implementation details in Section 6 and evaluate the performance
of Unicorn in Section 7. We conclude the paper and discuss the next
steps of Unicorn in Section 8.

2. Motivation and challenge

Analytics trace from the CMS experiment. We collect the trace
of approximately 479 thousand data analytics jobs from the CMS
experiment, one of the largest scientific experiments in the world,
over a period of 7 days. From this trace, we find that over 35% of jobs
consumes resources across different domains, i.e., these jobs use
the computation node and the storage node located at different do-
mains which are connected by networking resources across mul-
tiple domains. We call these jobs remote jobs, compared with local
jobs which only use resources within one single domain. This result
indicates the resource disaggregation in the CMS network, i.e., the
unbalanced distribution of storage and computation resources. We
also plot the cumulative distribution function of job execution time
for this set of traces as shown in Fig. 1. We observe that the 90%
quantile of job execution time for remote jobs has an extra 38.9%
higher latency than local jobs. In addition, we observe that the
cross-domain networking resources available for data analytics are
very limited because the CMS data transfer traffic is saturating the
limited networking resources, e.g., the cross-domain data transfer
network traffic of the same 7-day period has a total amount of 8785
terabytes while the cross-domain data analytics traffic is only 1404
terabytes. This observation indicates the scarcity of networking
resources available for data analytics in the CMS network. All these
results demonstrate that in order to support low-latency, multi-
domain, geo-distributed data analytics, it is not only necessary, but
crucial to design a multi-domain resource orchestration system.

Related work. There exists a rich literature in the field of resource
management of clusters [2-12]. YARN [4] is the core resource man-
agement framework of Hadoop. Mesos [3] is a platform designed
to share resources among multiple cluster computing frameworks,
e.g., MapReduce [14], Spark [15], MPI and etc. Google designs a
system called Borg [5] to orchestrate the cluster resources for its

190 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188-197

e
©

o
®

o
~

4
o

It
o

I
~

o
w

Fraction of job execution time

el
)
]

—Local job

—Remote job||

01234567 8910111213141516171819202122232425

Job execution time (hour)

o
-

Fig. 1. The CDF of job latency local and remote jobs.

proprietary data analytics frameworks. Microsoft (i.e., Apollo [6])
and Facebook (i.e., Corona [7]) also develop similar systems tailored
to their data analytics needs. These systems are all designed for
managing resources in single-domain clusters and adopt a graph-
based abstraction to represent the resource availability in clusters.
In this abstraction, each node in the graph is a physical node repre-
senting computation or storage resources and each edge between
a pair of nodes denotes the networking resource connecting two
physical nodes. This abstraction is inadequate for multi-domain,
geo-distributed data analytics systems for because (1) it compro-
mises the privacy of different domains by revealing all the details
of resources in each domain; and (2) the overhead to keep the
resource availability graph up to date is too expensive due to the
heterogeneity and dynamicity of resources from different domains.

There are also some efforts towards resource management for
multi-domain clusters. HTCondor [2] proposes a ClassAds pro-
gramming model, which allows different resource owners to ad-
vertise their resource supply and the job owners to advertise
the resource demand. The CMS [1] experiment currently uses
HTCondor and glideinWMS [8] to manage a set of distributively
owned computing resources in a globally distributed system. These
systems only focus on managing storage and computing resources
in clusters, while the recent study shows that computation, storage
and networking resources have approximately the same probabil-
ity to become the bottleneck affecting the performance of data-
intensive analytics jobs [16]. By leaving the orchestration of net-
working resources completely to TCP, which has been known to
behave poorly in networks with high bandwidth-delay products
including multi-domain, geo-distributed data analytics systems,
the abstraction adopted by these systems is also inefficient.

Another line of work called geo-distributed data analytics is
also related. Solutions in this field include (1) moving the input
dataset to a single data center before the computation [17,18] and
(2) placing different amounts of tasks at different sites depending
on dataset availability to achieve a better parallelization and hence
a lower latency [9-12]. The main focus of these solutions is to
optimize the usage of a set of dedicated networking resources.
The design of these systems cannot be applied to multi-domain,
geo-distributed data analytics where different types of resources
owned by different owners need to be orchestrated.

Design challenge. The discussion above shows the urgent need
for an efficient resource orchestration framework to support multi-
domain, geo-distributed data analytics systems such as CMS. And
by investigating the limitations of existing resource management

Domain A

Domain D Domain F

T

Domain C

Domain E

— /O

— link - switch

. storage node O computation node

Fig. 2. An example of multi-domain, geo-distributed data analytics system. Do-
mains A, B, E and F are leaf domains. Domains C and D are transmission domains.

systems, we identify the key design challenge for such a framework
is how to achieve resource discovery and representation across
different domains with minimal information exposure. To this
end, we design the Unicorn framework to manage a large set of
distributively-owned, heterogeneous resources for multi-domain,
geo-distributed data analytics systems. Unicorn achieves efficient
resource utilization while allowing the autonomy and privacy of
different domains through a novel resource state abstraction, an
efficient cross-domain discovery and representation component
and a global resource orchestration component, which will be
discussed in the next few sections.

3. Overview

In this section, we introduce the system setting for multi-
domain, geo-distributed data analytics and give an overview of the
Unicorn framework and its workflow.

System settings. We consider a data analytics system composed
of multiple organizations (domains). Each domain contributes a
certain amount of computation, storage and networking resources
for all the users in the system to store, transfer and analyze large-
volume datasets. The storage and computation resources are typ-
ically physical servers, virtual machines or containers. The net-
working resources are typically switches and links. Domains that
only contribute networking resources are called transmission do-
mains and domains that also contribute computation and storage
resources are called leaf domains. Fig. 2 gives an example of such a
system. In this example, domain A, B, E and F are all leaf domains
while domain C and D are transmission domains.

A data analytics task is typically decomposed into a set of jobs |
whose precedence relation is specified by a directed acyclic graph
(DAG). A task is finished if and only if the last job in the decom-
posed DAG is finished. Each job j has requirements on storage and
computation resources, e.g., number of CPUs, size of memory, input
dataset and etc. We use (stg, comp) to denote a pair of candidate
storage and computation resources satisfying the requirement of j.
The orchestration system is in charge of selecting one (stg, comp)
pair for each jobj and allocating the selected storage and computa-
tion resources and the networking resources connecting them for
executing j.

Unicorn architecture. We present the architecture of Unicorn in
Fig. 3. On top of all the domains, Unicorn provides a logically cen-
tralized controller to orchestrate resources for data analytics jobs.
This controller includes a cross-domain resource representation
and discovery component and a global resource orchestration com-
ponent. Residing in each domain are a domain resource manager
and a set of job execution agents.

Unicorn provides a novel abstraction called resource state ab-
straction, a variant of network view abstraction [13]. This abstrac-
tion uses a set of linear inequalities to accurately represent the

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188-197 191

8 Data Analytics Jobs

) Job Resource N

Requirements !

:

'

Accurate, Minimal, Job '

Cross-Domain Execution !

Resource View Status !

'

Resource |

Allocations }

Accurate, Minimal, \Discovery \Decisions !

Intra-Domain Query !

Resource Views Domain Job E

Resource || Execution '

Manager | Agents H

..
Domain 1 Domain N

Fig. 3. The architecture of Unicorn.

availability of different resources in each domain with minimal
information exposure. When a set of data analytics jobs J are
submitted to the Unicorn controller, the cross-domain resource
discovery and integration component issues discovery queries,
i.e., path queries and resource queries, to the domain resource
manager at each domain to retrieve the intra-domain resource
view of each domain encoded in the resource state abstraction.
It then assembles and compresses the responses into an accurate,
minimal cross-domain resource view. This view, together with the
resource requirements of j, is then used by the global orchestration
component to make global, optimal resource allocation decisions
and send to the job execution agents at corresponding domains.
The execution agents enforce the received decisions, e.g., start-
ing the corresponding program, rate limiting the data accessing
bandwidth and etc., and send the job execution status back to the
Unicorn controller as feedback. In the next few sections, we present
the design details of key components of Unicorn.

4. Cross-domain resource discovery and representation

In this section, we present our design to address the funda-
mental challenge of accurately discovering and representing a
large set of distributively-owned, heterogeneously resources with
minimal information exposure of resource owners. In particular,
we introduce a novel abstraction to represent intra-domain re-
source availability and design an efficient discovery mechanism to
discovery resource availability across different domains.

4.1. Intra-domain resource state abstraction

Basic idea. Unicorn framework provides an abstraction called
resource state abstraction to accurately represent the availability
of multiple resources for a set of data analytics jobs using a set of
linear inequalities. This is a variant of the network view abstrac-
tion [13]. In particular, we consider a set of data analytic jobs J that
wants to consume a set of physical resources R (i.e., computation,
storage and networking) based on a set of pre-defined policies P.
If a resource attribute attr is capacity-bounded, i.e., a resource r
can only provide this attribute with a certain capacity (denoted as
C"9y and each job j consuming r can only get a portion of this
attribute (denoted as cj“""), the resource availability of R for | on

this attribute can be expressed as:

Z er,attr < Cr,attr’vr €R, (]a)
JjeJ(P.r)

Link bandwidth: 100 Mbps
End host bandwidth: 10 Gbps
Switch bandwidth: 10 Gbps

Fig. 4. An example to illustrate the resource state abstraction.

¢ = f(P, attr, "), V(. 1 € R), (1b)

" =g(P, attr, cj’/’““r), Y(j,r € R,1’ € R{r}). (1c)

In this representation. Eq. (1a) indicates that the total amount
of attr of resource r consumed by all the jobs cannot exceed the
supply capacity of r on attr, where J(P, r) is the set of jobs that are
allowed to consume j based on the policy set P. Eq. (1b) represents
the total capacity of attr that j can get from the whole set of

resources R (denoted as ch'am) by a pre-defined linear function

of cjr’”m, whose form depends on attr and P. Eq. (1c) represents

the relation between the amount of attr a job j can get from two
resources r and r’ by a pre-defined linear function, whose form
depends on attr and P. One of the most common capacity-bounded
resource attributes is bandwidth.

If a resource attribute attr is capacity-free, i.e., each j consuming
r who provides this attributes can get the same capacity C"%" at
the same time, the resource availability of R for J on this attribute
can be expressed as:
c]?“f“ = h(P, R, attr, j),Vj €], (2)
where the value of Cf“"" is computed by a pre-defined function
h(P, R, attr, j) whose form depends on attr and P. Note that this
function does not need to be linear because the value of the right-
hand side can be directly computed in this availability represen-
tation. Examples of such capacity-free resource attributes include
propagation delay, hop-count, and etc.

Example. We use the physical topology in Fig. 4 to illustrate how
resource state abstraction works. Suppose two jobs j; and j, need
to read data from storage node eh; to computation node ehs and
from eh, to ehy, respectively. The routing policy for the data flow of
each jobis also shown in the figure. For simplicity, we only focus on
the bandwidth attribute for each resource, i.e., end host, switch and
link. Following the definition in Eq. (1), the resource availability of
this topology for j; and j, can be expressed as:

¢/ <100 Mbps, i={1,3},
¢/ <100 Mbps, i= (4,5},
cjli + cjg < 100 Mbps, i= {2},
cjflwk + cjw" < 10Gbps, k=1{1,2},
; m < 10 Gbps, m = {1, 3}, (3)
ci'™ < 10Gbps, m = {2,4},
R_l;_swk_ehm s —
CJE = i c];w _C]Qh , 1={1,2,3},Vk,m = {1, 3},
_ i ke cehm =
r=q l ¢, =" i=1{2,4,5},Vk,m = {2, 4},
]; :CJelm 05 12{455}sm:{2’4}’
ll m H
G =cim =0, i=(13m={13],

Computing minimal, equivalent resource state abstraction. The
representation of resource availability defined in Eqs. (1)(2) is
accurate and complete, but may result in a large set of linear
inequalities with redundant information. In a simple topology in
our illustration example, there are already over 20 inequalities. Di-
rectly sharing them with a centralized controller or other domains
would introduce a large communication overhead and expose
unnecessary private information about each domain, e.g., domain
topology and policies. We define a metric called compression ratio

192 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188-197

to measure the exposure of private information of resource state
abstraction.

Definition 1 (Compression Ratio). Given an original resource state
abstraction with M linear inequalities, a compressed, equivalent
resource state abstraction with N linear inequalities, which has the
same feasible region as the original resource state abstraction, has
a compression ratio of %

In Unicorn, the domain resource manager adopts a lightweight,
optimal algorithm that compresses the original resource state ab-
straction into an equivalent resource state abstraction with the
minimal compression ratio. The basis of this compression algo-
rithm is simple: given an original set of linear inequalities C : Ax <
b, we iteratively select one constraintc € C : a’x < band calculate
the optimal solution of problem y <— maxa’x, subject to, C — {c}.
If b is smaller than the resulting y, c is an indispensable constraint
in determining the feasible region and will be put into the minimal,
equivalent constraint set C’. Otherwise, c is a redundant constraint.
We propose the following proposition for this compression algo-
rithm.

Proposition 1. Given an original resource state abstraction, the
proposed compression algorithm computes an equivalent resource
state abstraction with the minimal compression ratio.

This proposition can be proved via contradiction. Applying this
algorithm to the example above, we may find that the minimal,

equivalent set of linear inequalities has only one inequality: c}j +

C]R < 100 Mbps. In other words, our compression algorithm

achieves the minimal compression ratio of 3—11
4.2. Cross-domain resource discovery

The resource state abstraction allows each domain to represent
the accurate resource availability for a set of data analytics jobs us-
ing a set of linear inequalities with minimal information exposure,
but it still requires the knowledge of all available computation,
storage and networking resources, i.e., the domain topology, and
the domain policy to construct the original abstraction. As a result,
it is non-trivial to extend it for resource discovery cross-domains,
when a job needs to consume resources located in different do-
mains, e.g., the storage node and computation node assigned to
the same job may be located in two different domains and are
connected by network links across multiple domains. This is be-
cause information such as domain topology and policy is usually
private to each domain itself and is not allowed to be passed
around different domains. In this subsection, we present the details
of our design to tackle this challenge and extend resource state
abstraction for cross-domain resource discovery.

Basic idea. The key insight of our design is simple yet powerful: if
we can partition the networking resources connecting a (str, comp)
candidate pair for job j based on the domains they belong to, as
shown in Fig. 5, we can then ask the domain resource manager of
each domain to compute and represent the resource availability for
j in each domain independently.

With this insight, we design the cross-domain resource dis-
covery process of Unicorn whose workflow is shown in Fig. 6. In
particular, Unicorn performs cross-domain resource discovery for
a set of candidate (stg, comp) pairs for a set of job J in four key
steps. The first step is the path query process, in which the Unicorn
controller issues path queries to the domain resource manager to
recursively get a domain path in the form of

(domy, srcIP, egress) — (dom,, ingress, egress)
— ..., (domy, ingress, dstIP), (4)

domN

computation

dom 1 T

o— |

storage

networking

Fig. 5. Partition the networking resources by domain.

LS

Accurate, minimal
cross-domain
resource view

Candidate (stg, comp)
pairs for job set J

Domain Paths Paniltloned .segments
in Equation(5)

h in Equationy(4 R
Pat| partition esource
Query Query

urate, minimal
intra-domain resource
views

Privacy-preserving
Resource
Integration

Domain A Domain C

Fig. 6. Workflow of cross-domain resource discovery.

for each candidate (storage, computation) node pair. The path query
can be executed either recursively or iteratively. The second step
is the partition process, which transforms the domain paths for
all the (stg, comp) candidate pairs, into a set of segments, i.e., the
partition results, with the form of

(domy, F;, Fy.ingress, F;.egress), (5)

for each domain, where F; denotes the set of all (stg, comp) can-
didate pairs whose connection use the network resource in do-
main i. Thirdly, the Unicorn controller sends each partitioned seg-
ment to the corresponding domain resource manager to issue
one resource query for each segment, which asks each domain
to compute the minimal, equivalent single-domain resource state
abstraction. Fourthly, a privacy-preserving resource information
integration protocol will be executed between all the domains
to compute the accurate, minimal cross-domain resource view
representing the cross-domain resource availability for a set of
candidate (stg, comp) pairs for a set of job J.

Path query. We present the pseudocode of the path query process
in Algorithm 1. The path query is a recursive query process. In
particular, the path query algorithm requires the input of domain,
which domain the query should be sent to, F, a set of (stg, comp)
candidate pairs whose connection use the network resource in
domain, and Ingress, the set of ingress points each candidate pair is
entering domain from. It starts from the Unicorn controller group
the whole set of F into multiple disjoint subsets based on where
the storage resources for this subset of pairs are located, and send
one path query for each subset to each corresponding domain.
When a domain resource manager receives such a query, it first
computes the egress point, the next domain, and the ingress point
of next domain for each candidate pair f (Line 3-4). Then the set F
is grouped into several disjoint subsets based on the next domain
of each pair f (Line 5). For each subset F; whose next domain is
not null, the current resource manager adds the current domain
into the domain path for F; and issues another path query to the
domain resource manager at F;.nextDom to get the remaining part
of the whole domain path (Line 8-12). If the next domain of F; is

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188-197 193

null, it means that the computation resources of these (stg, comp)
pairs are in the current domain, i.e., the domain path reaches the
destination, and the domain manager simply returns such infor-
mation to the querying party. During the path query process, each
domain only provides the egress points, the next domains and the
ingress points for (stg, comp) candidate pairs without revealing any
topology or policy information.

Algorithm 1: The algorithm of path query.

1 Function domPathQuery(domain, F, Ingress)
2 domPathResponse < (;

3 foreachf € F do

4 L (f .egress, f.nextDom, f.nextDomlIngress) <— getNextDomain(f);
5 {F1, F2, ..., } < F.groupBy(f .nextDom);
6 foreach F; do

7 if F;.nextDom! = null then

8 domPathResponse <

9 domPathResponseU
10 (domain, F;.egress)®
1 {domPathQuery(F;.nextDom, F;,
12 F;.nextDomingress)};
13 else
14 domPathResponse <«
15 domPathResponse U {(F;, null)};
16 return domPathResponse;

Resource query. For the sake of integrity, we present the pseu-
docode of partition and resource query together in Algorithm 2.
In particular, when the Unicorn controller receives the domain
path for each (stg, comp) candidate pair, it can use this information
to partition each path by domains and get the partition results
in Eq. (5) (Line 5-12). Then the Unicorn controller can perform
efficient resource queries to ask each domain to compute the intra-
domain resource view (Line 13-14).

This resource query process is efficient due to the following
proposition:

Proposition 2. Given a set of candidate (storage, computation) node
pairs for a job set of J, Unicorn achieves the minimal number of
resource queries at each domain.

Proof. With the domain path for each (str, comp) candidate pair,
the partition process yields a set of segments defined in Eq. (5), one
segment for each domain. Hence the Unicorn controller only needs
to generate one resource query for each domain if the correspond-
ing F; is not empty, which completes our proof.

Algorithm 2: The algorithm of partition and resource query
and.
Function resourceQuery(F, F.domainPath)

-

2 resourceView < ;

3 foreach domain do

4 | domain.F « &;

5 foreach f € F do

6 hldx < 0;

7 dom <« getDom(f .domainPath, hldx);
8 do

9 dom.F < dom.F U {f};

10 hldx < hldx + 1;

1 dom < getDom(f .domainPath, hldx);
12 while dom # null;

13 foreach domain do

14 L resourceQueryByDomain(domain, F)

Privacy-preserving resource information integration. During
the resource query phase, each domain d computes the equivalent
resource state abstraction that is only minimal to d itself. When

the controller collects the resource state abstraction from every
domain, a linear inequality that was from domain d; may be a re-
dundant one due to the existence of another linear inequality from
domain d,. For instance, d; may return f; +f, < 10 to the controller
while d, may return f; + f, < 5. It is easy to see that the cross-
domain minimal, equivalent resource state abstraction would only
contain fi + fo < 5, not fi + f < 10. A strawman approach
to compute the cross-domain minimal, equivalent resource state
abstraction is to have the controller run the MECS algorithm with
all the resource state abstraction from every domain as input. This
approach, however, would force each domain to expose unneces-
sary resource information, i.e., the redundant linear inequality, to
the controller, leading to unnecessary privacy leaks.

In Unicorn, we design a privacy-preserving resource informa-
tion integration protocol that allows every domain to discover
linear inequalities in its own domain that are redundant to the
minimal cross-domain resource state abstraction. This protocol
involves two steps. In the first step, each domain d uses the classic
pivoting algorithm [19] to compute all the vertices of the convex
polyhedron defined by all the linear inequalities of its own single-
domain resource state abstraction. In the second step, each domain
d peers with every other domain d’ € D, and uses a customized
secure two-party computational geometry protocol to decide if all
the vertices computed by d are on the same halfspace defined by
a given linear inequality c¢ in the resource state abstraction of d'.
If this is true, then c is a redundant inequality in the final cross-
domain resource state abstraction, hence will not be sent from
domain d’ to the controller. The privacy-preserving property of this
protocol is summarized in the following proposition.

Proposition 3. Given two domains d and d’, the proposed protocol
ensures that d knows which linear inequalities in its own single-
domain resource state abstraction are redundant to the single-domain
resource state abstraction of d’ without knowing what the resource
state abstraction of d’ has, and vice versa.

We leave the details of this protocol in [20] due to the space
limit.
Schedulability. The cross-domain resource discovery process in
Unicorn provides an accurate view of resource availability across
domains with minimal exposure of private information. One im-
portant question left, however, is whether this view provides a full
schedulability of resources for a logically centralized orchestrator.
We answer this question with the following theorem.

Theorem 1. When all the resources represented in the final resource
state abstraction queried from the cross-domain discovery process
in Unicorn can be fully controlled on the edge, i.e., all the attributes
of each resource can be controlled by end host, the resource view
provided by resource state abstraction provides a full schedulability
of resources to a centralized resource orchestrator.

We omit the proof of this theorem due to the space limit.
5. Global resource orchestration

With the accurate, minimal cross-domain resource view, Uni-
corn performs global resource orchestration to compute optimal
resource allocation decisions for a given set of jobs J. The mod-
ular design of Unicorn allows different allocation algorithms to
be deployed. For simplicity, we consider a set of jobs J with no
precedence from the same task, i.e., all the jobs can be executed in
parallel. We leave a more generic problem formulation as future
work. We assume that each computation resource has infinite
computation power, i.e., the data accessing delay reading data
from storage resources over networking resources to computation
resources is the only bottleneck determining the delay for each

194 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188-197

workflow. For each job j €], let Stg; denote the set of storage
resources storing a copy of the input dataset of j, Comp; denote
the set of computation resources that can execute j, v; denote
the volume of input dataset of j, and t; denote the data accessing
delay of j. We also use b]’-”” to denote the data access bandwidth
for job j from storage resource m to computation resource n, and
a binary variable Ij’“” to denote if j is assigned storage resource
m and computation resource n simultaneously or not. Note that
the global resource orchestration component relies heavily on
the cross-domain resource discovery component in Section 4. To
illustrate this argument, we first give a formulation of the global
optimal resource allocation problem without cross-domain resource
discovery as follows:

minimize maxje;{t;} (6)
subject to
o> m<n, ¥n e N, (7a)
{j€JIneComp;} meStg;
2. X m=t Vi€, (7b)
meStg; neCompj
vj .
=t, Vjie]J, (7¢)
ZmeStgj ZneCompj b}nnljmn
(71)
Ak (BI) < Cx. (7g)

In this formulation, Eq. (6) indicates that the global resource
allocation problem aims to minimize the data accessing delay for
the whole set of jobs F. Eq. (7a) ensures that for each computation
resource, at most one job can be assigned. Eq. (7b) ensures that only
one computation resource and one storage resource are assigned
for each job j. Eq. (7¢) calculates the data accessing delay for each
jobj. These constraints, i.e., Eqs.(7a)-(7c) are job-specific, i.e., they
express the requirements of data analytics jobs and can be changed
accordingly based on different job requirements. The constraints
in Eqs. (7d)—(7g) are resource-specific, which depends not only on
jobs’ resource requirements, but also on the attributes provided by
resources from each domain.

Though this formulation is accurate itself, its key limitation
is that without a cross-domain resource discovery process, it is
infeasible to find the resource-specific constraints in Eqs. (7d)-
(7g). On the contrary, the cross-domain resource discovery in Uni-
corn copes with this issue by providing the following constraint to
accurately represent the resource availability for a given set of jobs
with minimal information exposure.

A(BI) < C. (8)

With this formulation, the global optimal resource allocation
problem with cross-domain resource discovery can be precisely de-
fined as:

minimize maxje;{t;} (9)

subject to

Egs. (7a)(7b)(7c)(8). (10a)
Solution. The multi-domain resource allocation problem defined
above is complex in that it involves binary decisions, non-linear
constraints and a complex objective function. To solve this prob-
lem, we first linearize the binary decision variables, then use a stan-
dard optimization solver to find the solution to the relaxed non-
linear optimization problem, and then round-up the linearized

Table 1
Unicorn resource discovery protocol.
Service Path Query Resource Query
HTTP Method POST POST
Media Type application application
Accept Subtype alto-flowfilter+json alto-flowfilter+json
Content Subtype ~ alto-nextas+json alto-pathvector+json
Function Implement Implement
getNextDomain() in resourceQueryByDomain()
Algorithm 1. in Algorithm 2.

decision variables back to the {0, 1} feasible space to get the final
resource allocation decisions. Because the cross-domain resource
discovery process in Unicorn provides the resource view across do-
mains with a minimal set of linear inequalities, the time overhead
to solve the relaxed non-linear optimization problem is typically
reasonable. We leave the task of finding a more efficient algorithm
for this problem as future work.

6. Implementation

In this section, we discuss the implementation details of the
Unicorn framework. The system implementation includes the fol-
lowing components:

Resource discovery protocol. We design and develop a query-
based resource discovery protocol by extending the Application-
Layer Traffic Optimization (ALTO) protocol [21], to deliver the
resource state abstraction from each domain to the Unicorn con-
troller. The protocol provides two major services: path query service
and resource query service. The former is used for delivering next
hop information to from domain resource managers the Unicorn
controller. The latter is used for executing intra-domain resource
queries. Table 1 summarizes the basic view of the two services.

Domain resource manager. We build the prototype implementa-
tion of the domain resource manager on top of the OpenDaylight
SDN controller [22]. From the view of the Unicorn controller, the
domain resource manager works as a web service which provides
the resource discovery protocol. From the view of the OpenDay-
light controller, the resource manager is a consumer to re-process
the topology, the traffic statistics, the intra-domain resource infor-
mation and the inter-domain routing information.

The implementation includes two sub components: An Open-
Daylight application running in the Karaf container; and a Python-
based web service to provide the resource discovery protocol. The
OpenDaylight application uses the API provided by Model-Driven
SAL framework to read the real-time network information from
the OpenDaylight DataStore. The two sub components commu-
nicate via RPC with each other. So the web service component is
decoupled with the OpenDaylight and can be adapted to any other
network management platform.

To implement the resource query service, we use the Python
web service to look up the raw resource state for the given flow
set from the OpenDaylight back end. Our native OpenDaylight
application collects the topology and forwarding rules from the
network-topology and opendaylight-inventory model of
the DataStore, and computes the intra-domain resource state from
these information. In our Python web service, we use GLPK as
the underlying LP solver to calculate the minimal equivalent re-
source state abstraction described in Section 4.1. The solver API is
wrapped by PuLP so that we could switch to other LP solvers like
CPLEX and Gurobi without many modifications.

We implement the path query service as a BGP compatible ser-
vice. The domain resource manager reads the inter-domain routing
information from the OpenDaylight DataStore and converts it to
the BGP RIB (Routing Information Base) format to respond the

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188-197 195

path query. The native OpenDaylight could support multiple inter-
domain routing protocols by implementing their adaptors. In this
prototype, we only implement the BGP adaptor which feeds the
next-hop information of the inter-domain routing from the bgp-
rib model.

Cross-domain resource discovery. The cross-domain resource
discovery implements the two algorithms, path query (Algorithm
1) and resource query (Algorithm 2) and aggregate resource state
abstraction from multiple domains to provide a aggregated re-
source state abstraction to the Global Resource Orchestration. It
provides a high-level APl getGlobalResourceView which ac-
cepts a set of node pairs (srcIP, dstIP) as the queried flow set,
and returns a set of linear inequalities as the global resource
view. In addition, it also provides some low-level APIs including:
getDomainPath that implements the Algorithm 1 and returns
the domain path; and getDomainResource that retrieves the
intra-domain resource view from a domain via resource discovery
protocol.

Global resource orchestration. We implement the global re-
source orchestrator to subscribe to the analytics job management
database. Once new jobs are inserted into the database, the orches-
trator fetches them, performs cross-domain resource discovery
and then make resource allocation decisions. It provides numerous
Python APIs for developing new resource allocation algorithms.
Therefore it is flexible for administrators to update the resource al-
location policy. Our current orchestrator makes resource allocation
decisions by solving the optimization problem defined in Section
5.

7. Performance evaluation

We evaluate the performance of Unicorn through trace-based
simulations. In particular, we focus on the efficiency of Unicorn in
(1) discovering and represent a cross-domain resource view with
minimal information exposure; and (2) performing global resource
allocation decisions for data analytics jobs. All the simulations are
conducted on a laptop with two 1.6 GHz Intel i5 Cores and a 4 GB
memory.

7.1. Methodology

We emulate three multi-domain data analytics networks with
different number of domains and topologies. For each setting, we
first randomly select one topology from Topology Zoo [23] and
let that topology be the domain-level topology with each node
represent a single domain. And we also generate the intra-domain
topology, i.e., switches and the intra-domain links, for each domain.
The emulated multi-domain topologies are labeled as Arpanet
(composed of 4 domains), Aarnet (composed of 19 domains) and
Chinanet (composed of 42 domains). The scale of these multi-
domain topologies reflects the scenario of high-energy physics
research programs. We leave the evaluation of larger multi-domain
topologies (e.g., hundreds or thousands of domains from the CAIDA
datasets) as future work. We set the available link bandwidth
within each domain to be 0.2-1 Gbps and the available link band-
width between domains to be 2-4 Gbps. And we assume the I/O
bandwidth of storage and computation resources are way larger
than the bandwidths of links. We assume each domain’s intra-
domain and inter-domain routing policies both use the typical
routing policies, i.e., the shortest path routing, except that the
former is on the router level and the latter is on the domain level.
We vary the number of data analytics jobs J from the same task to
be from 5 to 30, each of which requires reading 1000 GB of data.

1
0.9/ IMIntra-domain resource view

008 [|Cross-domain resource view
go.

0.7
508
§ 0.5
504

£0.3

)
0.2
0.1
0

5 10 20 30
Number of jobs

Fig. 7. Compression ratio of intra-domain resource view and cross-domain re-
source view with varying numbers of jobs.

0.9/ |IMintra-domain resource view
©20.8 |[ICross-domain resource view
0.7
506
g 0.5
504 i
£€0.3
o
Q0.2

0.1

0
Arpanet Aarnet Chinanet
Topologies

Fig. 8. Compression ratio of intra-domain resource view and cross-domain re-
source view with different topologies.

7.2. Results

Cross-domain resource discovery and representation. We first
present the compression ratio of the Unicorn in discovering and
representing the accurate, minimal intra- / cross-domain resource
views. This result is computed based on Definition 1 in Section 4.1.
Fig. 7 shows this compression ratio in a 19-domain data analytics
network derived from the Aarnet topology [23] with different
number of data analytics jobs, and Fig. 8 shows this ratio under
different number of domains when fixing the number of jobs to be
20. From these results we observe that the average compression
ratio of intra-domain resource view is only around 60%-70% while
that of the cross-domain resource view is around 25%-45%. These
show that Unicorn provides a highly compact view of cross-domain
resource availability for data analytics jobs. The higher compres-
sion ratio in the cross-domain view is because a multi-domain data
analytics network provides more resources for data analytics jobs,
i.e., there are fewer jobs sharing the same set of resources. On the
other hand, the fact that the highest cross-domain compression
ratio is still 45% shows that even with more resources, jobs sharing
the same set of resources is still a common situation, indicating
the necessity and importance for discovering the accurate, minimal
resource availability across domains.

We also plot the number of linear inequalities in the intra-
[cross-domain view discovered by Unicorn in Figs. 9 and 10. We
see that as the number of domains and the number of jobs grow,
the number of linear inequalities in the accurate, minimal resource
view computed by Unicorn increases at a very slow rate, which
demonstrates the scalability of Unicorn.

Global resource orchestration. We next demonstrate the effi-
ciency of Unicorn in performing global resource orchestration for
data analytics jobs. In particular, we focus on the latency of a

196 Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188-197

® 160
§140
o120
£ 100

80
60
40
1 1
0
5 10 20 30

Number of jobs

e

Ml intra-domain resource view
[ICross-domain resource view

e

o

Number of linear

Fig. 9. Number of linear inequalities in intra-domain resource view and cross-
domain resource view with varying numbers of jobs.

0 220

2 500 |MIntra-domain resource view

© [JCross-domain resource view

5180

g 160

£ 140

& 120

£ 100

° &

é 40

22 M-]
Arpanet Aarnet Chinanet

Topologies

Fig. 10. Number of linear inequalities in intra-domain resource view and cross-
domain resource view with different topologies.

Table 2
The reduction of task latency of Unicorn over the domain-path allocation scheme
with max-min fairness..

Topology #]Jobs

5 10 20 30
Arpanet 31% 24% 27% 65%
Aarnet 27% 46% 55% 10%

task composed of a job set J, which is computed as the longest
execution time of all jobs. In our evaluation, we assume all the
computation nodes have the same computation power, hence we
only need to focus on minimizing the maximal data accessing delay
among all jobs, as defined in Eq. (6). We compare the task latency
provided by Unicorn with that provided by a domain-path based
resource allocation scheme, which allocates computation and stor-
age resources for a job based on the shortest AS path and use the
classic max-in fairness mechanism to allocate bandwidth among
data accessing flows of analytics jobs. We summarize the results
under the combinations of different multi-domain topologies and
different numbers of jobs in Table 2. We see that Unicorn provides
an up to 65% task latency reduction in all cases. This shows that
Unicorn provides a significant latency reduction for multi-domain
data analytics.

8. Conclusion and future work

Summary. In this paper, we identify the objective and the fun-
damental challenge for designing a resource orchestration system
for multi-domain, geo-distributed data analytics system through
analyzing the data analytics trace from one of the largest scientific
experiments in the world and examining the design of existing

resource management systems for single-domain clusters. We de-
sign Unicorn, the first unified resource orchestration framework
for multi-domain, geo-distributed data analytics systems. Unicorn
realizes the accurate, cross-domain resource availability discovery
with minimal information exposure of each domain through the
resource state abstraction and a novel, efficient cross-domain re-
source availability query algorithm. Unicorn also provides a global
resource orchestrator to compute optimal resource allocation de-
cisions for data analytics tasks. We present the implementation
details and the preliminary evaluation results of Unicorn.

Prototype and full demonstration at SuperComputing 2017.
The source code and more comprehensive evaluation results of
Unicorn will be open-sourced at [24]. A full demonstration of the
Unicorn prototype has been given at SuperComputing 2017. In
this demonstration, we demonstrate the efficiency and efficacy of
Unicorn on cross-domain resource discovery and global resource
allocation in a multi-domain, geo-distributed data analytics system
involving the Caltech booth, the USC booth and the UNESP booth
at the conference exhibition, the SCinent network, and the Caltech
testbed at Pasadena.

Acknowledgments

We thank Shenshen Chen, Shiwei Chen, Haizhou Du, and Kai
Gao for helpful discussion during the work. The Tongji team is sup-
ported in part by NSFC #61702373, #61672385 and #61701347;
and China Postdoctoral Science Foundation #2017-M611618. The
Yale team is supported in part by NSF grant #1440745, CC*IIE In-
tegration: Dynamically Optimizing Research Data Workflow with
a Software Defined Science Network; Google Research Award, SDN
Programming Using Just Minimal Abstractions. The Yale team is
also sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence under Agreement Number W911NF-16-
3-0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the
U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the UK. Government. The U.S. and U.K.
Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
hereon. The Caltech team is supported in part by DOE/ASCR project
#000219898, SDN NGenlA; DOE award #DE-AC02-07CH11359,
SENSE, FNAL PO #626507; NSF award #1246133, ANSE; NSF award
#1341024, CHOPIN, NSF award #1120138, US CMS Tier2; NSF
award #1659403, SANDIE.

References

[1] The CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3
(08) (2008) http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[2] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the
Condor experience, Concurr. Comput. Pract. Exp. 17 (2-4) (2005) 323-356.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S.

Shenker, 1. Stoica, Mesos: A platform for fine-grained resource sharing in the

data center, in: NSDI, 2011.

V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.

Graves, J. Lowe, H. Shah, S. Seth, et al., Apache Hadoop YARN: Yet another

resource negotiator, in: SoCC, ACM, 2013, p. 5.

A.Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,]. Wilkes, Large-

scale cluster management at Google with Borg, in: EuroSys, ACM, 2015, p. 18.

E. Boutin,]. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, L. Zhou, Apollo:

Scalable and coordinated scheduling for cloud-scale computing, in: OSDI,

2014, pp. 285-300.

Under the hood: Scheduling MapReduce jobs more efficiently with Corona,

http://on.fb.me/TxUsYN. [Online; accessed: 09-May-2017].

1. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wurthwein, The

pilot way to grid resources using glideinWMS, in: CSIE, IEEE, 2009, pp. 428-

432.

A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, G. Varghese, WANalytics:

Analytics for a geo-distributed data-intensive world, in: CIDR, 2015.

[4

[5

[6

(7

[8

[9

http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb2
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb2
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb2
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb4
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb5
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb5
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb5
http://on.fb.me/TxUsYN
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb8

[10]

[11]

[12]

[13]

(14]
[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

[23]

[24]

Q. Xiang, X. Tony Wang, J. Jensen Zhang et al. / Future Generation Computer Systems 93 (2019) 188-197 197

Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, . Stoica,
Low latency geo-distributed data analytics, in: SIGCOMM, ACM, 2015, pp.
421-434, http://dx.doi.org/10.475/123.

C.-C. Hung, L. Golubchik, M. Yu, Scheduling jobs across geo-distributed data-
centers, in: SoCC, ACM, 2015, pp. 111-124.

Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, S. Wang, Rapier:
Integrating routing and scheduling for coflow-aware data center networks,
in: INFOCOM, 2015.

K. Gao, Q. Xiang, X. Wang, Y.R. Yang,]. Bi, NOVA: Towards on-demand
equivalent network view abstraction for network optimization, in: IWQoS
2017,2017.

D. Jeffrey, G. Sanjay, MapReduce: simplified data processing on large clusters,
Commun. ACM (2008).

M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, L. Stoica, Spark: Cluster
computing with working sets, in: HotCloud’10.

K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.G. Chun, V. ICSI, Making
sense of performance in data analytics frameworks, in: NSDI, 2015, pp. 293-
307.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J.
Wanderer, J. Zhou, M. Zhu, et al., B4: Experience with a globally-deployed
software defined WAN, in: SIGCOMM’'13.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R. Watten-
hofer, Achieving high utilization with software-driven WAN, in: SIGCOMM,
ACM, 2013.

D. Avis, K. Fukuda, A pivoting algorithm for convex hulls and vertex enumer-
ation of arrangements and polyhedra, Discrete Comput. Geom. 8 (3) (1992)
295-313.

Privacy-preserving resource information integration: Details, https://www.
dropbox.com/sh/6tq5t896etxbvso/AACkQJq_31MdtOvzh]JOP-6j8a?dl=0.

R. Alimi, Y. Yang, R. Penno, RFC 7285, Application-layer Traffic Optimization
(ALTO) Protocol, IETF ALTO, 2014.

J. Medved, R. Varga, A. Tkacik, K. Gray, Opendaylight: Towards a model-driven
SDN controller architecture, in: IEEE WoWMoM, 2014.

S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The Internet
Topology Zoo, 29(9) 1765-1775.

Public Repository of Unicorn, https://github.com/snlab/Unicorn.

Qiao Xiang is an associate research scientist in the De-
partment of Computer Science at Yale University. His
research interests include software defined networking,
resource discovery and orchestration in collaborative
data sciences, interdomain routing, and wireless cyber-
physical systems. From 2014 to 2015, he was a postdoc-
toral fellow in the School of Computer Science at McGill
University. He received his master and Ph.D. degrees in
computer science at Wayne State University in 2012 and
2014, respectively, and a bachelor degree in information
security and a bachelor degree in economics from Nankai

University in 2007.

X. Tony Wang is a Ph.D. candidate in the Department of
Computer Science and Engineering at Tongji University.
His research interests include software defined network-
ing, interdomain routing and distributed computing. He
received a bachelor degree in engineering from the De-
partment of Computer Science and Engineering at Tongji
University in 2014.

J- Jensen Zhang is a Ph.D. candidate in the Department
of Computer Science and Engineering at Tongji Univer-
sity. His research focuses on network resource discovery,
abstraction and programming consistency for large-scale
data analytics systems. He is also an active member of
the IETF ALTO working group and the OpenDaylight open
source community. He received a bachelor degree in en-
gineering from the Department of Computer Science and
Engineering at Tongji University in 2015.

Harvey Newman (Sc. D, MIT 1974) is the Marvin L.
Goldberger Professor of Physics at Caltech, and a faculty
member since 1982. In 1973-4 he co-led the team that
discovered fourth quark flavor known as “charm”. He co-
led the MARK] Collaboration that discovered the gluon,
the carrier of the strong force in 1979. Since 1994 he
has been a member of CMS that discovered the Higgs
boson at LHC in 2012. Newman has had a leading role
in originating, developing and operating state of the art
international networks and collaborative systems serving
the high energy and nuclear physics communities since
1982. He served on the IETF and the Technical Advisory Group that led to the NSFNet
in 1985-6, originated the worldwide LHC Computing Model in 1996, and has led the
science and network engineering teams defining the state of the art in long distance
data transfers since 2002.

Dr. Y. Richard Yang is a Professor of Computer Science
and Electrical Engineering at Yale University. Dr. Yang's
research is supported by both US government funding
agencies and leading industrial corporations, and spans
areas including computer networks, mobile computing,
wireless networking, and network security. His work has
been implemented/adopted in products/systems of ma-
jor companies (e.g., AT&T, Alcatel-Lucent, Cisco, Google,
Microsoft, Youku), and featured in mainstream media in-
cluding Economist, Forbes, Guardian, Chronicle of Higher
Education, Information Week, MIT Technology Review,
Science Daily, USA Today, Washington Post, and Wired, among others. His awards
include a CAREER Award from the National Science Foundation and a Google
Faculty Research Award. Dr. Yang’s received his B.E. degree in Computer Science
and Technology from Tsinghua University (1993), and his M.S. and Ph.D. degrees in
Computer Science from the University of Texas at Austin (1998 and 2001).

Y. Jace Liu is a research assistant in the Department of
Computer Science and Engineering at Tongji University,
China. His research interests include software defined
networking, large-scale data analytics systems and high-
performance computing. He received a bachelor degree
in engineering from the Department of Computer Science
and Engineering at Tongji University in 2017.

http://dx.doi.org/10.475/123
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb11
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb11
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb11
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb14
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb14
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb14
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb18
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb19
https://www.dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0
https://www.dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0
https://www.dropbox.com/sh/6tq5t896etxbvso/AACkQJq_3lMdtOvzhJ0P-6j8a?dl=0
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb21
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb21
http://refhub.elsevier.com/S0167-739X(18)30241-3/sb21
https://github.com/snlab/Unicorn

	Unicorn: Unified resource orchestration for multi-domain, geo-distributed data analytics
	Introduction
	Motivation and Challenge
	Overview
	Cross-Domain Resource Discovery and Representation
	Intra-Domain Resource State Abstraction
	Cross-Domain Resource Discovery

	Global Resource Orchestration
	Implementation
	Performance Evaluation
	Methodology
	Results

	Conclusion and Future Work
	Acknowledgments
	References

