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Abstract—End-to-end route control spanning a set of networks
can provide opportunities to both end users to optimize in-
terdomain control and network service providers to increase
business offering. BGP, the de facto interdomain routing pro-
tocol, provides no programmable control. Recent proposals for
interdomain control, such as MIRO, ARROW and SDX, provide
more mechanisms and interfaces, but they are only either point
or incremental solutions. In this paper, we provide the first,
systematic formulation of the software-defined internetworking
(SDI) model, in which a network exposes a programmable
interface to allow clients to define the interdomain routes of
the network, just as a traditional SDN switch exposes Openflow
or another programmable interface to allow clients to define its
next hops, extending SDN from intra-domain control to generic
interdomain control. Different from intradomain SDN, which
allows complete client control, SDI should also maximize network
autonomy, such as by allowing a network to maintain the control
of its interdomain export policies, to avoid fundamental violations
such as valley routing. We define the optimal end-to-end SDI
routing problem and conduct rigorous analysis to show that
the problem is NP-hard. We develop a blackbox optimization
algorithm, which leverages Bayesian optimization theory and
important properties of interdomain routing algebra, to sample
end-to-end routes sequentially and find a near-optimal policy-
compliant end-to-end route with a small number of sample
routes. We implement a prototype of our optimization algorithm
and validate its effectiveness via extensive experiments using
real interdomain network topology. Results show that in an
interdomain network with over 60000 ASes and over 320000 AS-
level links, in 80% experiment cases, the blackbox optimization
algorithm can find a near-optimal policy-compliant end-to-end
route by sampling less than 33 routes.

I. INTRODUCTION

Although flexible, end-to-end route control may provide
substantial benefits to both networks and end users (e.g.,
conduct traffic engineering, or prevent DDoS attacks), it is
extremely complex and difficult to achieve, if not impossible,
in the current Internet. This is due to the design of the Border
Gateway Protocol (BGP) [1], the de facto interdomain routing
protocol. Specifically, with BGP, each autonomous systems
(AS) can make and execute its own policy to select routes
on a destination prefix basis, and export the selected routes,
in terms of path vectors (i.e., AS path), to its neighbor ASes.
Although this design is simple and widely adopted, it provides
very limited mechanisms for network operators and end users
to achieve flexible, end-to-end route control. AS paths that
span from a source AS to a destination AS, and that the path
does not traverse a certain AS.

To appreciate the limitation of BGP, consider AS S shown
in Fig. 1, who has a strong performance requirement to
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Fig. 1: A motivating example to illustrate the limitations of
BGP and other interdomain routing systems for supporting
flexible, end-to-end route control.

select a shortest AS path from it to a destination prefix p
located at AS T. The ranking used by AS A and D to
select routes is also shown in the figure. Assume that the
export policies of each AS is to always announce the selected
route to its neighbor ASes. When the network converges,
AS A selects the AS-path [A, B, D, F, H,T] and announces
to AS S. As such, the only AS-path to 7" learnt by S is
[S,A,B,D,F,H,T]. One can observe that there are indeed
AS paths shorter than [S, A, B, D, F, H,T] in the network,
such as [S, A, B, D, E,T]. To use such a path, AS D must
select the route [D, E, T]. Unfortunately, in BGP, AS S cannot
control D to select [D,E,T]. As such, S can only use
[S,A,B,D,F,H,T], not satisfying its requirement. At the
same time, AS D misses a potential business opportunity.

To provide more flexible, end-to-end route control, several
interdomain routing systems have been designed and de-
ployed [2]-[10]. For example, in MIRO [9] and ARROW [10],
an AS allows a client (i.e., an operator of another AS or
an end user) to control its interdomain routing, by mapping
the client’s traffic into tunnels to achieve more flexible in-
terdomain traffic control. In SDX [5], an Internet exchange
point, which can also be considered as an AS, allows a
direct upstream AS of the exchange to control how traffic is
distributed among its downstream, and a direct downstream AS
to control how traffic gets into the downstream, using flexible
matching conditions (e.g., match on TCP/IP 5-tuple). Although
these systems provide clients more mechanisms than BGP to
control interdomain routing, they either are point solutions
(e.g., SDX) or may have datapath overhead such as tunneling
processing on each data packet.

In this paper, we investigate a novel, systematic, low-
overhead interdomain route control model which we call the
software-defined internetworking (SDI) model. Motivated by
the success of intradomain SDN models such as Openflow or
P4 but extending to interdomain, SDI defines an interdomain



programmable interface so that a network exposes to a client
its available interdomain routes (i.e., its interdomain routing in-
formation base) to a destination, and the client can then choose
one of them, just as an intradomain SDN client can select a
port as the next hop among a set of available output ports of
an SDN switch; Different from intradomain SDN, however,
SDI maximizes network autonomy, by allowing a network to
maintain the control of its interdomain export policies, to avoid
fundamental violations such as valley routing.

Allowing client control and at the same time maximizing
network autonomy by allowing a network to fully control its
export policies exposes challenging problems not investigated
before, although the problems also exist in aforementioned
early work. Specifically, consider the same interdomain net-
work in Fig. 1 and assume that the ASes have the follow-
ing autonomous, private export policies: (1) AS D will not
announce any AS path containing AS E to AS B; (2) AS
C will not announce any AS path containing AS E to AS
A; (3) AS B will not announce any AS path containing AS
G to AS A. Still consider AS S, whose goal is to send
traffic toward p along a shortest AS path. Conducting SDI
control, AS S may ask AS D and AS A to select route
[D, E,T] and route [A, B, D, E, T}, respectively, hoping that
it can then use the route [S, A, B, D, E, T|. However, because
D will not announce route [D, E,T] to B due to its export
policy, the route [S, A, B, D, E, T| cannot be used by S. In the
worst case, only after enumerating many paths can S find that
[S, A, C, D, T)] is the only export-policy-compliant shortest AS
path. Such an interdomain SDN with autonomy problem has
not been studied before.

We formulate the optimal interdomain SDI route control
with policy compliance problem, which we refer to as the
optimal end-to-end SDI routing problem. We conduct rigorous
analysis on the computational complexity of this problem and
prove its strong NP-hardness. The fundamental reason behind
the computational intractability of this problem is that each
AS can autonomously make and execute its own export policy.
Previous studies [11], [12] show that when ASes all follow the
Gao-Rexford route selection and export policies based on the
customer/peer/provider business relationship [13], the shortest
policy-compliant route can be computed in polynomial time.
However, a recent survey [14] on many network operators
shows that a high percentage of ASes are actually breaking
the Gao-Rexford condition in their export policies.

We develop a blackbox optimization algorithm to sample
end-to-end routes sequentially and find a near-optimal policy-
compliant end-to-end route with a small number of samples.
Our algorithm, built on the Bayesian optimization frame-
work, is highly efficient for two reasons. First, it iteratively
leverages the prior belief about the problem to help direct
the sampling, and to trade exploration and exploitation of
the search space [15], [16]. Second, it leverages important
properties from interdomain routing algebra [17], [18] to
derive an accurate estimation on the expected improvement of
an end-to-end route, which avoids the efficiency loss brought
by rounding continuous sample points into discrete sample

Symbol | Meaning

v An AS

(u,v) An edge from AS u to AS v in the AS Graph

r A route (AS Path)

P A destination IP prefix

ey (p,r) | The export policy of AS v for prefix p and route r
cy(r) The pricing policy of AS v for route r

f The objective function

TABLE I: Symbols

routes [19].
The main contributions of this paper are as follows:

e« We provide the first, systematic formulation of the
software-defined internetworking(SDI) model, extending
intradomain SDN to generic interdomain SDN;

o« We systematically study the optimal end-to-end SDI
routing problem, and show that the problem is strongly
NP-hard;

e« We develop a blackbox optimization algorithm, which
integrates the Bayesian optimization theory and important
properties in interdomain routing algebra, to efficient find
near-optimal end-to-end routes with a small number of
route sampling;

« We implement a prototype of our algorithm and evaluate
its performance via extensive experiment using real-world
topology. Results show that in an interdomain network
with over 60000 ASes and over 320000 AS-level links,
in 80% experiment cases, the blackbox optimization
algorithm can find a near-optimal policy-compliant end-
to-end route by sampling less than 33 routes.

II. SDI MODEL AND PROBLEM FORMULATION

In this section, we first give the systematic formulation of
the SDI model. Then we define the problem of finding a
route that is compliant to local policies and achieves global
optimal objectives, namely the optimal end-to-end SDI routing
problem.

A. Basic Definitions

Global network. We use a graph G = (V, E) to denote an
interdomain AS network, where ASes are interconnected by
BGP'. A vertex v € V represents an AS in the network,
and a bidirectional edge (u,v) € FE represents a BGP session
between AS u and AS v.

Interdomain route. An interdomain route r is represented as
a sequences of ASes [v1,va, ..., v,] (also called an AS path),
where v; # v; for any two integers ¢ # j € [1,n]. Given a
route r, we call v; the source AS and v,, the destination AS.
Given two routes r1 = [v1,...,v,] and ro = [ug, ..., Uy,
if (vp,u1) € FE and Vi € [1,n],Vj € [I,m],v; # uj,
the concatenation of r; and r,, represented as r; @ ro =
[U1y. .y UnyUt, ..., U], is also a route.

Network configuration. Each AS node v is configured with
two key attributes: an export policy, and a pricing policy. In

'For simplicity of presentation, we stick to the one-big-switch abstraction
widely used in BGP studies (e.g., [1], [13], [17], [20]).



this paper, we assume the ASes are propagating the routing
information from destination to source. Thus, the export policy
also only applies to the routes from the current AS to the desti-
nation. The export policy is modeled as a function e, (p,r, u).
It takes a destination IP prefix p and a route r, and returns
either 1 if AS v will announce route [v] @ r to its neighbor u
if r is available, or O otherwise. A pricing model is important
when an AS allows a client to override the network’s default
interdomain route selection policy. In this paper, we denote
the pricing model as a function ¢, (r). It takes a route r and
returns a real number, which stands for the price to set up r
for a match in AS v.

Definition 1 (Policy-Compliant Route): A route r =
[v1,v9,...,v,] toward a destination IP prefix p is export-
policy-compliant or simply policy-compliant if and only if the
following condition holds:

e(p,r) & N e (o, ig1, o vnlvicn) =10 (1)
=2

With the aforementioned model, one is able to verify if an
AS path is policy compliant and also to calculate the total cost
of establishing a route r = [vy, ..., v,] as follows:

n

c(r) 2 Zcui([vi,viﬂ, .

i=1

; Vn))- @)

Client’s objective function. An objective function f(r) takes
route r and returns a real number, which represents the
objective for the route. Without loss of generality, we focus
on functions f that satisfy the following two properties:

 monotonicity: Given a route r, f([u,v] ®r) > f(r);

o isotonicity: Given two routes ry and ro, if f(ry) > f(ra),

then f([u,v] ®r1) > f([u,v] ®ra).

A typical example of the monotone and isotonic objective
function is the shortest AS path, where f(r) is the inverse
of the AS path length. Other monotone and isotonic objective
functions include weighted shortest AS path?, widest shortest
AS path, reachability, etc. A more complete list of monotone
and isotonic objective functions can be found in [21].

B. SDI Programmable Network

SDI programming service at an AS. In addition to an actual
BGP speaker, each AS v € G also runs a virtual BGP speaker,
which has the same route selection and export policies as the
actual BGP speaker of v, and establishes BGP sessions with
the virtual BGP speakers of the neighboring ASes of v in G.

Each AS v exposes the following information to clients.
First, given a destination IP prefix p specified by a client, it
exposes the routing information base (RIB), i.e., all available
routes v has to reach p. Second, given a destination IP prefix
p and a route r from v to p specified by a client, it exposes the
price for the client to use r. Exposing such information will
not expose the private policies (i.e., the route selection / export
/ pricing policies) of ASes, because inferring these policies

2With all weights being positive

based on the exposed information is a constraint acquisition
problem, which is computationally intractable [22].

Each AS v provides three programming interfaces to clients.
Specifically, it uses a two-phase commit design pattern to
allow a client to test the policy-compliance of an end-to-end
interdomain route r before actually using and paying for it.
This design has two advantages: (1) it avoids the disruptions
and churns in the interdomain network caused by the client
using a non-policy-compliant route; (2) it avoids the waste
of monetary expense of the client paying for a non-policy-
compliant route. The programming interfaces are as follows.

o select Route(match,r): This interface is to select a route
r to forward the class of traffic specified by the packet
header matching condition match in the virtual BGP
speaker. Upon receiving this request from a client, AS
v first checks if r is in its RIB. If so, it selects this route
in its virtual BGP speaker, and lets the virtual speaker
follow its export policy to announce r to neighboring
virtual BGP speakers.

o commitRoute(match,r): This interface is to install a
route r in the forwarding information base (FIB) of AS
v, to forward the class of traffic specified by the packet
header matching condition match. AS v first checks if r
is in its RIB. If so, it will configure its real BGP speaker
to install this route in the FIB of the router, and follow
its export policy to announce this route to neighboring
BGP speakers.

e deleteRoute(match,r): This interface is to stop using
the route r for the class of traffic specified by match.
AS v will remove the r from its FIB.

Interaction between client and ASes. A client can use the
exposed information and programming interfaces of ASes to
achieve flexible, end-to-end interdomain route control.

First, given an end-to-end route r = [vy,v2,...,0,], a
client checks if it is policy-compliant. Specifically, a client can
iteratively interact with the ASes along r in backward order:
for any 7 = n,...,2, the client asks AS v; to select route
[Vs, ..., vy] in its virtual BGP speaker using the select Route
interface and observes the RIB of AS v;_;. If route [v;, . . ., vy,]
is observed in the RIB of v;_; for all ¢ = n, ..., 2, the route
r is policy-compliant.

Second, a client also interacts with the ASes along r to
evaluate the total cost of using r. This can be achieved by
asking the price of using route [v;, v;41,...,v,] for each AS
v; along r.

Third, after the client finds a policy-compliant end-to-end
route r = [v1,Va,...,0,] he wants to use for forwarding
certain traffic. He can interact with the ASes along r in a back-
ward order (i.e., from v,, to v;1) to setup the this route. Specif-
ically, for each AS wv;, the client uses the commiteRoute
interface to request v; to install a route [v;, Vit1,...,0,] in
its forwarding information base to forward the traffic specified
by the packet header matching condition match.



Fig. 2: An illustration of constructing G' from an instance of
3-SAT problem.

C. Optimal End-to-End SDI Routing Problem

Based on the aforementioned models, we now formally
define the optimal end-to-end SDI routing problem.

Problem 1 (Optimal End-to-End SDI Routing Problem): For
an interdomain network G = (V, E'), where the export policy
and the pricing policy of AS v are denoted as e,(p,r,u)
and ¢, (r) respectively, and f(r) denote the global objective
function while B denote the cost budget, the optimal policy-
compliant route r* for a match m from a source AS s to a
destination AS t is the solution of the following optimization
problem:

maximize

f(r)
subject to,
v = 8,0, =t,e(p,r) =1,¢(r) < B
ITII. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of
Problem 1. Our main finding is summarized in the following
theorem:

Theorem 1: The optimal end-to-end SDI routing problem
(Problem 1) is strong NP-hard.

To prove the NP-hardness of Problem 1, we first consider
the following problem:

Problem 2 (Shortest Policy Compliant AS-Path Problem):
Assume an interdomain network G = (V, E), where ASes not
only provide the SDI service described in Section II, but also
expose their export policies to the client. Given a source AS
vs, a destination AS vg, a positive integer K, and a positive
real number B, is it possible to find a route r from v, to vq4,
such that (1) the AS path length of r is less than or equal to
K, (2) r is policy-compliant, and (3) the total cost of using r
is less than or equal to B.

It is easy to see that Problem 2 is a simplified variant of the
optimal end-to-end SDI routing problem. And we propose and
prove the following lemma:

Proposition 1: Problem 2 is strong NP-hard.

Proof: We prove the NP-hardness of Problem 2 via a
reduction from the 3-SAT problem. Specifically, given an
instance of a 3-SAT problem with n clauses {C1,Cs, ..., Cp}.
We use z;; to denote the j-th literal in the i-th clause
C;. For each clause C;, we construct a graph G; =
(‘/Z'7E7‘,), where VZ = {Si7ti7’lj7;1,vi2,1]7;3}, and Ei =
{(Sivvij)v (Uijv t1)| where .7 =12, 3}

We then can construct an instance of Problem 2 as follows:
First, we construct the graph G by connecting G; and G;1
with an edge (¢;,s;41) for i = 1,2,...,n — 1 (Fig. 2). For
each AS v;;, we define its export policy as follows: given an
AS path r, if r contains an AS v/, whose corresponding

literal z;/ ;7 = —x;5, AS v;; will not announce r to AS ;.
For each AS s;, we define its export policy as: announcing
every route to every neighbor v;;. For each AS t;, we define
its export policy as: announcing every route to neighbor s;4.
We set K = 3n — 1. For each AS in the constructed graph
G, we set its pricing policy to be always charging the client
B/3n for any route the client want so use. We suppose the
client wants to find an end-to-end route r from s; to ¢, such
that (1) r policy-compliant, (2) r has an AS path length less
than or equal to K, and (3) the cost of using r is less than
or equal to B. We can see that this process of constructing an
instance of Problem 2 from an instance of the 3-SAT problem
is polynomial.

After the construction, if the 3-SAT instance is satisfi-
able, assume the in clause Cj, the j;-th literal x;;, is true,
then the route [si,v1j,,%1,82,v2),,%2,...,t,] is a policy-
compliant route in the constructed instance of Problem 2.
On the other hand, if there exists a policy-compliant route
(51, V14,5 t1, S2,V2j,,t2, ..., ty] in the constructed instance of
Problem 2, a satisfiable truth assignment can be found for the
original 3-SAT instance by setting literal x;;, to be true. As
such, we complete the proof. |

With the proof of Proposition 1, the correctness of Theo-
rem 1 is an immediate result.

IV. BLACKBOX OPTIMIZATION ALGORITHM

In this section, we first present a strawman solution based
on the Yen’s k-shortest-path algorithm [23], and show that
its poor performance is caused by 1) the high latency of
testing the policy-compliance of routes and 2) the worst case
of exponential enumeration complexity. To resolve these prob-
lems, we devise an efficient blackbox optimization algorithm,
which samples end-to-end routes sequentially and finds a
near-optimal policy-compliant end-to-end route with a small
number of samples.

A. Naive Route Enumeration Algorithm

A naive solution is to iteratively check the k-th optimal
route from v, to v; computed by the Yen’s algorithm [23] until
finding the first policy-compliant route of which cost does not
exceed B. Its pseudocode is presented in Algorithm 1.

Algorithm 1: Naive Route Enumeration Algorithm.

1 foreach £ =1,2,..., do

2 Compute the k-th optimal AS path using the Yen’s
algorithm and denote as rg;

Test the policy-compliance of rg;

Compute the cost of using rg;

if v) is policy-compliant and c¢(r) < B then
L return ry;

3
4
5
6

7 return null;

Specifically, in this solution, Yen’s algorithm employs a
generalized Dijkstra’s algorithm proposed in [21]. In each
iteration k, the Yen’s algorithm computes a set of deviation
paths from the k — 1-th optimal path rj_;, which shares a



subroute with ri_;. Among the newly computed deviation
paths and the computed but unselected deviation paths in
previous iterations, the algorithm selects the one with the
largest utility f() as the k-th optimal path. As such, this naive
solution can always find the optimal end-to-end route that is
policy-compliant and does not exceed the client’s budget.

However, there are two issues with this solution. First, in
each iteration, a client needs to test the policy-compliance
of the k-th shortest AS path r. This process incurs a long
latency because the client needs to interact with ASes along
r sequentially. Second, in the worst case, the algorithm needs
to enumerate all possible routes between vs and v, of which
complexity is O(V!).

B. Blackbox Optimization Algorithm

Given the hardness of finding the optimal end-to-end route,

we instead design a blackbox optimization algorithm that sam-
ples end-to-end routes sequentially and finds a near-optimal
policy-compliant end-to-end route with a small number of
sampled routes. The key insights behind our algorithms are:
First, it leverages the prior belief about the problem to help
direct the sampling, and to trade exploration and exploitation
of the search space [15], [16]. Second, it leverages important
properties from interdomain routing algebra [17], [18] to
derive an accurate estimation on the expected improvement of
an end-to-end route, which avoids the efficiency loss brought
by rounding continuous sample points into discrete sample
routes [19].
Reformulation as blackbox optimization problem. We first
transfer the formulation of Problem 1 into a blackbox op-
timization problem. For simplicity, we omit prefix p from
function e and use e(r) instead. We move e(r) from the
constraint to the objective, and get the blackbox optimization
formulation as follows:

maximize u(r) = e(r)f(r)

subject to,
vy = s,v, =t,¢(r) < B

Based on the fact that both e(r) and c(r) are unknown

to the client, but can be observed through the interaction
between client and ASes, our algorithm utilizes the framework
of Bayesian Optimization (BO), a powerful framework for
solving optimization problems whose objective functions and
constraints are unknown beforehand, but can be observed
through experiments [15], [16].
Sampling routes using Bayesian optimization. BO is a
sequential model-based approach. Within this framework, we
can define a prior belief over the possible objective functions
u(r) = e(r) f(r) and constraints ¢(r), and then sequentially re-
fines this model as end-to-end routes are sampled via Bayesian
posterior updating [16]. To sample efficiently, BO uses an
acquisition function to determine the next route to sample.
As such, BO has the nice property that it typically only needs
to sample a small number of routes to find a near-optimal
end-to-end route.

Different types of acquisition functions can be used in the
BO framework to guide the sequential sampling process. We
adopt the Expected Improvement (EI) acquisition function as
it has been verified to perform better than other acquisition
functions in most cases [24], [25].

Given a route r that u(r) has not been evaluated yet, we
define its improvement function as follows:

I(r) = max{u(r) — u(rt),0}, 3)

where T is the route that provides the maximum objective
value observed so far. In other words, I(r) is positive when
the prediction of u(r) is higher than the best value u(r™) so
far. Otherwise, I(r) is set to zero.

Next route r to evaluate is the one that maximizes the
expected improvement:

r = argmax E[I(r)|Dy],
r

where D is a set of routes whose value of u() is known.

If we assume u(r) in Equation IV-B is a Gaussian process,
we can adopt a covariance function (i.e., the kernel function)
to measure the similarity between to different routes (e.g., the
Maternb/2 kernel [25]), and plug in the kernel function in to
the close-form expression of EI [26]. However, in the optimal
end-to-end route problem, the search space is discrete.

A strawman approach to tackle the discrete search space

is to still use the close-form expression of EI derived in [26]
to maximize EI, and then rounding the result to get the next
route r. However, it has been reported in recent studies that this
rounding approach performs poorly in the BO framework [19].
As such, we need to explore other approaches to compute EI
for discrete decision variables (i.e., routes).
Discrete EI maximization leveraging properties from in-
terdomain routing algebra. Our solution to the discrete
EI maximization problem is to leverage the following two
properties derived from interdomain routing algebra [17], [18]
to derive an accurate estimation of FI(r).

Proposition 2 (Subroute Policy-Compliance): If a route
r = [v1, Vg, ..., Vy] is policy-compliant, any route [v;, ..., Uy],
where ¢ = 1,2,...,n is policy-compliant.

Proposition 3 (Non-policy-compliance by inclusion): If a
route r = [vq, v, ...,Vy] is not policy-compliant, any route
r’ that is constructed by prepending a segment in graph G
before r is not policy-compliant.

These two properties help the client to better predict the
probability of a route r being policy-compliant or not. Specif-
ically, assuming the export policies of ASes are independent
from each other, given a route r = [v,va,...,v,], We use
P;i—1([vi,...,v,]|D) to represent the probability that AS v;
will announce route [v;, . .., v,] to AS v;_1, given the current
set of sampled routes D.

Then the probability that r is policy-compliant, represented
by Py, is computed as

P = H Pi,i—l([viz-'wUHHD) 4

Then we have



Ele(r)[D]=1-P.+0-(1—
(%)

With Equation 5, we can do the following derivation on the
expression of expected improvement of a route:

E[I(r)|D] =Efmax{u(r) - u(r*),0}|D]
= max{E[u(r)| D] - u(r"),0}
:maX{E[e(r)|D] (I‘+),0}

f(r)
:max{f(r) H Pi,i,l([vi,...

.....

s vn]|D) = u(r™), 0}
©

In addition, as suggested by [27], we also add another term
to the right-hand side of Equation 7, changing it to:

E(I(r)|D) =P(c(r) <B)

max{ f(r

H P 1 vly"'7

.}

)70},

to make the choice of next route to test bias towards one that
is likely to satisfy the cost constraint.

Next we derive an estimator on P;;_1([v;,...,v,]|D). In
particular, during the sampling process, we keep the record on
the policy-compliance test results for previous sampled routes
in D. For any two ASes v;, v;—1 in r, we calculate two values:

vn]|D) %)

—u(r

e w;;—1(r): to count the number of routes in D such
that (1) AS v; announces its subroute to AS v;_1, and
(2) the announced subroute intersects with the subroute
[Uia RN vn}'

e b;;—1(r): the number of routes in D such that (1) AS
v; does not announce its subroute to AS v;_1, and (2)
the unannounced subroute intresetcts with the subroute
[Ui7 N ,’Un}.

Then we can approximate P; ;_1([v;, ..., v,]|D) as

exp(w; ;i—1(r))
exp(wi,i—1(r)) + exp(bii—1(r))’

Pii—1([viy ..., vn]|D) = ®)
Plugging Equation 8 into Equation 7, we get a close-form
estimation on E(I(r)|D), the expected improvement of route
r over sampled set of routes D.
Two-level sequential sampling to quickly find near-optimal
end-to-end route. We now present our complete blackbox
optimization algorithm for the optimal end-to-end route prob-
lem (Algorithm 2). Note that the algorithm also contains
several subroutines. Due to the page limit, we only present
two most important ones for reference (i.e., Algorithm 4 and
Algorithm 3).

In the initialization phase, the algorithm defines 4 empty
sets: Rp is the set of policy-noncompliant subroutes found
during the test of route policy-compliance; D is the set of
sampled routes that have been evaluated for policy-compliance
and cost-compliance; R, is the set of sampled routes that have

Algorithm 2: Blackbox Optimization Algorithm.
' Rp=0,D=0,R, = 0, R, = 0

2 r = genericDijkstraAlg(G,vs, vt);

3 e(r) = PCTest(r, Rp);
4
5

if e(r) == 1 and getCost(r < B) then
L return r;

6 else

7 Tlgst = T,

8 u(rlast) = 6(1‘) X f(r);

9 D=DU (rlast7 u(rlast));

10 tiocal = tglubal =0

11 while tglobal >= Tglobal and Rq 7é 0 do

12 if tiocat >= Tiocar and Ry == () then

13 tiocal = 0;

14 R = getGlobalCandidates(G, Rp,vs, vt);

15 else

16 L R = getLocalCandidates(G, rigst);

17 foreach r € R do

18 if isForbidden(r, Rr) then

19 D =DU(r,0);

20 R=R-{r};

21 R.=R.UR;

22 r; = argmax,cp_ E(I(r)|D), where E(I(r) is
computed in Equation 7;

23 R(: = Rc - {rt};

24 e(r) = PCTest(r, Rp);

25 D =DU (v, u(r]);

26 if e(r) == 1 and getCost(r < B) then

27 L R, =R, U{r};

28 tiocal = tiocal + 1, tglobal = tglobal+1;

29 | Tiast = T't;

30 return argmax ¢ p, f(r);

not been evaluated for policy-compliance or cost-compliance;
R, is the set of routes that are found to be both policy- and
cost-compliant during the search process (Line 1).

As a starting point, the algorithm chooses an optimal end-
to-end route computed by the general Dijkstra algorithm [21],
and tests its policy-compliance and cost (Line 2-4, and Algo-
rithm 4). If this route is indeed policy-compliant and does not
exceed the client’s budget, the algorithm simply stops since
the optimal solution has been found (Line 5). Otherwise, the
algorithm keeps the record of this route in set D (Line 7-9),
and enters the sequential sampling process (Line 11).

In each iteration of the sampling process, the algorithm
first tries to do a “local exploration”, i.e., it samples a set
of candidate routes R, each of which shares a subroute with
Iiqst, the last route that is tested for policy-compliance and
cost-compliance (Line 16 and Algorithm 3). If the algorithm
has already sampled locally for a total of 7j,.,; iterations and
still cannot find any route that is both policy-compliant and
cost-compliant, it will do a “global exploration” by sampling a
set of random candidate routes from v, to v; that differs from



the found policy-non-compliant subroutes in Rr as much as
possible, and resets the number of local exploration ¢;,¢4; (Line
13-14).

Algorithm 3: Local exploration of candidate routes:
getLocalCandidates(G, ).

1 R.=0;
21 =[v1,02,...,0];
3 foreachi=2,...,n—1do
4 | Ei=FEg—Uj=1,..i{(v;,v41)}
5 Vé = Vg;
6 r, =
[V1,...,v;]) ® genericDijkstra((VE, EL), vi, vn);

7 R.=R.U{r;};

8 return R ;

After exploring candidate routes, the algorithm leverages
Proposition 3 to only keep candidate routes that do not contain
any subroute in Ry (Line 17-20), merges them with candidate
routes left before in R. (Line 21), and selects r from the
remaining sampled routes whose expected improvement is
the largest among all the sampled, yet unevaluated routes
R.i (Line 22). After that, the algorithm evaluates the policy-
compliance and cost-compliance of r, and added it to R, if it
is both policy-compliant and cost-compliant (Line 24-27).

The sequential sampling process terminates after a total
number of Tg;,pq iterations or I, becomes non-empty. Then
the route which has the largest utility value f() is the resulting
near-optimal, end-to-end route (Line 30).

Algorithm 4:
PCTest(r, Rr).
1 Input: r = [v1,va,...,0,];
2 foreach i =n,...,2 do

Policy-compliance  test of r:

3 Call selectRoute(match, [v;, ..., vy,]) at AS v;;
4 Get RIB;_1 at AS v;_q;

5 if [v;,...,v,] ¢ RIB;_1 then

6 Rp = RpUv;—1,0i,...,0];

7 return 0;

8 return 1;

Discussion. Due to the combinatory nature of Problem 1, it
is very challenging to derive an explicit convergence bound
of our blackbox optimization algorithm. In order to guarantee
that at least one policy-compliant and cost-compliant route is
found, we explicitly specify it as part of the stopping condi-
tion. As such, in the worst case, our blackbox optimization
algorithm still needs to enumerate a large number of routes.
However, in practice, this worst case would rarely happen.
This is because, with the help of the expected improvement
acquisition function, our algorithm can smartly decide the
next route to test for policy and cost compliance, substantially
reducing the numbers of sample routes needed. In addition, by
leveraging Proposition 3, our algorithm substantially reduces
the ratio of sampled routes that require policy-compliance test
between the client and ASes, which is the most expensive part

of enumeration. We validate our argument on the efficiency
and efficacy of our algorithm using real-world data. As we
will show in the next section, in an interdomain network
with over 60000 ASes and over 320000 AS-level links, in
80% experiment cases, the blackbox optimization algorithm
can find a near-optimal policy-compliant end-to-end route by
sampling less than 33 routes.

V. EVALUATION

In this section, we conduct extensive evaluations aiming to
answer the following questions: 1. How fast can the Bayesian
Optimization framework find the (near-)optimal end-to-end
route? 2. How likely can the Bayesian Optimization framework
find a (near-)optimal end-to-end route in a reasonable time?

A. Experiment Setting

Network Topology. To evaluate our approach, we use the AS-
level Internet topology derived from the CAIDA dataset [28]
which includes 63361 ASes and 320978 AS-level links.
Initial RIB. Each AS follows the derived AS business rela-
tionship to set its local preference for BGP route selection by
default, which provides the initial RIB information.

Export Policies. Each AS configures the following types
of route export policies to determine whether announcing a
received route to a neighbor AS: 1. Neighboring Business
Relationship: An AS never exports a non-customer route to a
non-customer neighbor; 2. Blackhole: For some security rea-
son, e.g., BGP hijacking prevention, an AS may not export any
routes across a set of suspected ASes; 3. Forbiden Segment:
For some security or business reason, an AS may not export
any routes including some specific segments.

Searching Algorithms. We implement the following end-to-
end route search algorithms: 1. Shortest Path Enumeration
(SPE): Use YEN’s algorithm to iterate K-shortest path in order
until the first policy-compliant route is found; 2. Software-De-
fined Internetworking Bayesian Optimization (SDIBO): Use
the Bayesian Optimization framework with the discrete EI
acquisition function and the two-level sequential sampling
approach to finding the near-optimal policy-compliant route.
Intents. We generate global end-to-end intents based on
Internet traffic dataset [28]: we choose the top 10 ASes which
receive the most traffic volume as destinations. For each se-
lected destination AS, we choose top 200 source ASes sending
the most traffic volume to this destination AS. We generate
2000 end-to-end intents in total and check the connectivity?
in the derived AS-level Internet topology. Finally, we get 1620
effective end-to-end intents.

Experiment Workflow. We implement a BGP simulator to
simulate the RIB computation and route announcement, and a
prototype SDI client to find the optimal end-to-end route. We
design the experiment as follows: First, we run our customized
BGP simulator for this AS-level Internet topology until it
converges, and collect the RIB of each AS as the initial
prior knowledge. Then we feed the converged topology with

3We suspect the reason of disconnectivity is because the inferred AS
relationship is incomplete.



the BGP RIBs to our prototype SDI client. After that, the
prototype SDI client proposes a global end-to-end intent and
tries to find the optimal policy-compliant route within the
minimal number of policy-compliance tests by using one of
end-to-end route search algorithms above.
Policy-compliance Tests. There are two methods to test
whether a path is policy-compliant as a whole or at a certain
AS as follows: 1. Active Test: The client actively sends a test
request of route r = [vq,...,v,] to the remote virtual BGP
speaker at v and observes whether [v] @ r appears in a given
neighbor u. 2. Local Test: If the client has ever actively tested
the visibility of a route for a node, it will cache the result.
Next time when the client has to check it again, the client
only need to locally check it using the cache.

B. Searching Efficiency

In this section, we evaluate the searching efficiency of
different search algorithms, i.e., how fast they can find the
(near-)optimal end-to-end route.

Metric. We use the following metrics to measure the searching
efficiency of an algorithm: 1. Number of Active Tests: It
represents the number of active test requests sent before
finding the solution. 2. Number of Local Tests: It represents the
number of local tests (i.e., cache lookups). 3. Average Number
of Active/Local Tests: 1t represents the average number of ac-
tive/local tests on a path for an intent. 4. Absolute Active/Local
Test Improvement: 1t is calculated by subtracting the number
of active/local tests for SPE by the number of active/local
tests for SDIBO. 5. Relative Active Test Improvement: It is
calculated by dividing the absolute active test improvement
by the number of active tests for SPE.

Early Termination Thresholds. The route optimization prob-
lem is NP-hard. So in the worst case, whatever the algorithm
is adopted, the client has to enumerate all simple paths from
the source to the destination. It is not realistic in practice so
we set two thresholds to terminate the searching: 1. Maximum
Number of Active Tests: In practice, an active test action
usually takes a long time. So we set a threshold (60) to
limit the maximum number of such actions for each intent.
2. Maximum Number of Local Tests: Local test action is
usually quick. However, in the worst case, one will enumerate
all routes. Considering the scale of the Internet, it still may
take intolerant time. So we also set a threshold (2500) to limit
the maximum number of local tests for each intent.

Results. We first demonstrate the performance gain of SDIBO
for each intent. Fig. 3 demonstrates the CDF curve of the
absolute active test improvement and the relative active test
improvement. As we can see, SDIBO improves the active test
in most cases and is likely to get substantial improvement:
for 80% of the requests, SDIBO can reduce more than 7 active
tests and more than 20% of active tests made by SPE; for 50%
requests, SDIBO can reduce more than 15 active tests and by
40% to 80% of active tests made by SPE, which yields an
improvement of 1.6x to 5x on the execution time.

To further understand the performance of SDIBO, we draw
a scatter figure where the x-coordinate represents the absolute
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active test improvement and y-coordinate represents the abso-
lute local test improvement. As we can see in Fig. 4, most
dots fall into the lower right region (x > 0, y < 0, red color),
where SDIBO takes less active tests but more local tests. This
indicates that SDIBO searches routes more effectively and
fully leverages the local information. We also see that many
dots even fall into the upper right region (z > 0, y > 0,
green color), where SDIBO uses less active tests and fewer
local tests, which further demonstrates the benefits of SDIBO’s
intelligent searching method.

C. Searching Effectiveness

In this section, we demonstrate the search effectiveness
of different search algorithms, i.e., whether they can find a
(near-)optimal end-to-end route in a reasonable time and how
optimal the route is.

Metrics. We use the following metrics: 1. Proportion of
Effective Search: 1t represents the proportion of intents where
at least one policy-compliant end-to-end route is found before
early termination. 2. Proportion of Optimal Search: It repre-
sents the number of intents for which the SDIBO finds the
optimal policy-compliant end-to-end route, i.e., the route has
the same length as the one found by SPE if any.

Early Termination Thresholds. We use the same early
termination thresholds as in the last section.

Results. Fig. 5 demonstrates the proportion of successful
search of SPE and SDIBO with the aforementioned setting.
We can see that within a given time scale (bounded by the
thresholds), SDIBO can substantially improve the chance that
a policy-compliant end-to-end route is found: 61% (SDIBO)
to 24% (SPE), which yields a 2.5x improvement.
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We have also calculated the proportion of optimal search.
Surprisingly, the proportion is 100%, i.e., SDIBO is able to
find a policy-compliant route with the same optimal length as
SPE if any. While the result may be related to the selected
objective function, this still demonstrates that SDIBO has a
very high probability to find an optimal policy-compliant
end-to-end route within a reasonable time.

VI. RELATED WORK

BGP mechanisms for end-to-end route control. The main
mechanisms in BGP to support end-to-end route control are
selective announcement [29], AS path prepending [30], BGP
FlowSpec [2] and BGP communities [31]. However, they are
limited due to the destination-based forwarding nature and
the peering model of BGP. Selective announcement, AS path
prepending and BGP FlowSpec are mainly used for an AS to
control its inbound traffic. And BGP communities only enable
the interaction between two peering ASes. As illustrated in
the motivating example in Section I, BGP does not support a
source AS or end user to affect the route selection of remote
ASes.

Recent interdomain routing protocols and systems. Many
interdomain routing protocols [32]-[38] and systems [3]-[7],
[91, [10], [39], [40] have been proposed to provide more
mechanisms and interfaces for end-to-end route control. Their
design can be categorized into three classes. The first one is
third-party composition [3]-[7], [41]. An important represen-
tative system of this category is SDX [5] and its variants [6],
[71, [41]. A major limitation of SDX is that a client’s routing
control actions are only used within the exchange point with-
out being announced to other ASes. Hence, enforcing clients’
routing policies at different SDXes can cause correctness
issues such as persistent forwarding loops. To resolve this,
forwarding loop detection approaches (e.g., [7], [41]) have
been proposed, but they still have a problem with a large
number of false-positive alerts.

The second category is tunnel-based overlay [9], [10], [42]-
[44]. MIRO [9], ARROW [10] and RCS [43] are the most
recent systems in this category. The basic idea is to let a
stub AS interact with a remote AS to select routes different
from the BGP route, and then build a tunnel between stub and
remote ASes to utilize the negotiated routes. As such, these
systems have datapath overhead such as tunneling processing

on each data packet. In addition, to ensure the convergence of
interdomain routing, tunnels built and used in these systems
are not announced to other ASes. This use-announcement
inconsistency is usually not preferred by network operators
for security reasons, e.g., violation of data traffic regulation
may happen without being detected.

Third, Google and Facebook [39], [40] also develop flexible
peering systems to take route selection back to edge by
overriding the BGP. However, these systems can only control
the next-hop AS of traffic forwarding.

In contrast, in this paper, we propose SDI, a novel, system-
atic, low datapath overhead route control model, in which a
network exposes a programmable interface to allow clients to
define the interdomian routes of the network.

Bayesian optimization. Our blackbox optimization algorithm
is built on the Bayesian optimization framework [15], [16],
[19]. Bayesian optimization is a powerful framework for
optimizing objective functions that are expensive to evaluate.
However, when the decision variables are discrete, it is shown
that the commonly rounding approach has a negative impact
on the efficiency of BO [19]. A recent work proposes to use the
graph to encode the discrete search space and applies spectral
graph theory to solve the corresponding expected improvement
maximization problem [45]. However, this design has severe
scalability issues. In contrast, we leverage important properties
from interdomain routing algebra to derive an accurate esti-
mation of the expected improvement of an end-to-end route.
As demonstrated in Section V, our EI estimation is accurate
and fast even in large networks.

Routing algebra. Routing algebra has been used to analyze
the stability, correctness and optimality of routing proto-
cols [17], [18], [21], [34]. To the best of our knowledge, we
are the first to leverage properties derived from interdomain
routing algebra to improve the efficiency of blackbox end-to-
end route optimization.

VII. CONCLUSION

In this paper, we provide the first, systematic formulation
of the software-defined internetworking model, in which a
network exposes a programmable interface to allow clients
to define the interdomain routes of the network, but still
maintains the control of its export policies. We define the op-
timal end-to-end SDI routing problem, prove its NP-hardness,
and develop a blackbox optimization algorithm to efficiently
find the near-optimal, policy-compliant end-to-end route with
a small number of sample routes. We evaluate our algo-
rithm extensively using real interdomain network topologies
to demonstrate its efficiency and efficacy.
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