
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019 805

An Objective-Driven On-Demand Network
Abstraction for Adaptive Applications

Kai Gao , Member, IEEE, Qiao Xiang, Member, IEEE, Xin Wang, Yang Richard Yang, Member, IEEE,

and Jun Bi , Senior Member, IEEE

Abstract— Revealing an abstract view of the network is
essential for the new paradigm of developing network-aware
adaptive applications that can fully leverage the available com-
putation and storage resources and achieve better business
values. In this paper, we introduce ONV, a novel abstraction of
flow-based on-demand network view. The ONV models network
views as linear constraints on network-related variables in
application-layer objective functions, and provides “equivalent”
network views that allow applications to achieve the same optimal
objectives as if they have the global information. We prove the
lower bound for the number of links contained in an equivalent
network view, and propose two algorithms to effectively calculate
on-demand equivalent network views. We evaluate the efficacy
and the efficiency of our algorithms extensively with real-world
topologies. Evaluations demonstrate that the ONV can simplify
the network up to 80% while maintaining an equivalent view
of the network. Even for a large network with more than
25 000 links and a request containing 3000 flows, the result can
be effectively computed in less than 1 min on a commodity server.

Index Terms— Software-defined networking, routing algebra,
quality of service, resource abstraction.

I. INTRODUCTION

LARGE-SCALE distributed systems, such as geo-
distributed data centers [1] and international scientific

research programs [2], [3], have components (data cen-
ters, sites, etc.) located in different cities, countries and

Manuscript received November 4, 2017; revised June 9, 2018; accepted
January 25, 2019; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor S. Mascolo. Date of publication March 26, 2019; date of current
version April 16, 2019. This work was supported in part by the U.S.
Army Research Laboratory and the U.K. Ministry of Defence under Grant
W911NF-16-3-0001, in part by the National Science Foundation under Grant
CC-IIE 1440745, in part by the National Natural Science Foundation of China
under Grant 61472213 and Grant 61502267, and in part by the National Key
Research and Development Plan of China under Grant 2017YFB0801701.
(Corresponding author: Kai Gao.)

K. Gao was with the Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing 100084, China, and also with the Department
of Computer Science, Yale University, New Haven, CT 06511 USA. He is
now with the College of Cybersecurity, Sichuan University, Chengdu 610065,
China (e-mail: kaigao@scu.edu.cn).

Q. Xiang and Y. R. Yang are with the Department of Computer Science,
Yale University, New Haven, CT 06511 USA (e-mail: qiao.xiang@yale.edu;
yry@cs.yale.edu).

X. Wang is with the Department of Computer Science and Technology,
Tongji University, Shanghai 201804, China, and also with the Key Laboratory
of Embedded System and Service Computing, Ministry of Education, Beijing
100816, China (e-mail: 13xinwang@tongji.edu.cn).

J. Bi is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100084, China, and also with the Beijing National
Research Center for Information Science and Technology, Tsinghua Univer-
sity, Beijing 100084, China (e-mail: junbi@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TNET.2019.2899905

even continents. To ensure connectivity and minimal perfor-
mance guarantees, these components are usually connected by
tunnels with resource reservations.

Advanced network management technologies such as Soft-
ware Defined Networking (SDN) have enabled network ser-
vice providers to provide on-demand resource reservations,
such as AT&T’s Domain 2.0 [4] and ESNet’s OSCAR
system [5]. Network tenants can adjust the reservations flexi-
bly to better match their demands.

However, demands of large-scale distributed systems are
usually not fixed because of data replications and service
load balancing – the same transfer job can be done using
different components. In the meantime, orchestration systems
such as Microsoft’s Clarinet system [6] have been developed
to optimize the large-scale query jobs across different geo-
distributed data centers based on real-time inter-connection
qualities, i.e., the optimal demands of such systems depend
on the available resources.

It is quite common that tenants decide their optimal
demands based on a certain objective function of avail-
able resources and end-to-end metrics, such as high tun-
nel utilization [1], flow completion time [7], job completion
time [6], throughput [8], etc. Without the ability to accurately
know the available resources, a tenant can only make blind
guesses which may lead to conservative or unrealistic reserva-
tions, and hurt the tenant’s quality of service. Thus, it’s becom-
ing increasingly important that network service providers offer
on-demand resource abstractions to help tenants better exploit
the flexibility of on-demand resource reservations.

SDN enables a network to collect information from all
the devices and construct a global view, which may contain
essential quality of service (QoS) metrics such as available
bandwidth, loss rate and routing cost values, which are critical
to performance of distributed applications.

Unfortunately, while northbound APIs for “apps” (manage-
ment programs) to access the global view have been provided
by many SDN controllers (e.g., [9]–[12]), they are usually
not open to non-administrative parties. Major concerns include
privacy and security, because the global view contains sensitive
information that can be leveraged to conduct attacks on the
SDN infrastructure [13]. Also, the global view is not friendly
to program with because it can contain a lot of redundant
information and lead to unnecessary communication overhead.

Thus, a problem arises on how to provide an abstract
network view which can both eliminate these drawbacks and

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2037-4427
https://orcid.org/0000-0002-8695-1047

806 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

still provide high-quality information. It is non-trivial because
of the following challenges:

• Feasibility: A decision made with the abstract view
should also be feasible in the original network. Infeasible
reservations are either rejected, or lead to over-subscribed
tunnels which may eventually lead to congestion.

• Generality: The abstract view should be general enough
to provide fine-grained information and suffice the
demands of applications with heterogeneous objectives.

• Optimality: A decision made with the abstract view
should be as optimal as with the original network infor-
mation. A suboptimal solution will affect the quality of
service and cannot fully utilize the network resources.

• Privacy: The abstract view must be able to protect the pri-
vacy of the network service provider, making it difficult
for malicious applications to infer the global information.

• Efficiency: The abstract view should not introduce too
much computation/communication overhead, even with
moderately large networks and workloads.

Existing abstractions [14]–[23] usually target at a cer-
tain type of scenario and cannot support applications which
require fine-grained QoS metrics. For example, many of these
abstractions cannot accurately represent bottlenecks shared by
multiple correlated flows in an arbitrary network, which is
critical in emerging use cases such as geo-distributed data
centers [1], [24], [25] and scientific computing platforms [26].

In this paper, we take the first step towards providing
high-quality network information for network-aware adap-
tive applications with ONV, an abstraction for flow-based
On-demand Network View. Based on the observation that net-
work information is eventually used by applications to conduct
optimizations, ONV provides equivalent network view which
satisfies the aforementioned properties simultaneously.

The main contributions in this paper include:
• We systematically investigate the problem of provid-

ing on-demand network view for network-aware adap-
tive applications with heterogeneous optimization goals,
a missing functionality from current SDN northbound
API design.

• We address the challenges by proposing ONV, an abstrac-
tion for flow-based on-demand network view. ONV
is based on the concept of equivalent network view.
We derive the criteria of equivalent network view and
gives the lower bound of number of links.

• We propose two algorithms which conduct equivalent
network transformations to obtain the equivalent network
view.

• We implement a prototype of ONV and evaluate its
performance using real applications over simulated net-
works of real topologies. Evaluations show that ONV
guarantees both feasibility and optimality, improves pri-
vacy by reducing information leak, and reduces the
communication overhead by a factor of 1.25 to 5 even
for large networks (real ISP network topologies with up
10000 nodes and 30000 links) and large workloads (more
than 3000 flows).

The rest of the paper is organized as follows. We sum-
marize the demands for fine-grained network views, existing

abstractions and their limitations in Section II. Formal descrip-
tions of the abstraction problem and the equivalent net-
work view are then given in Section III and Section IV
respectively, followed by the transformation algorithms in
Section V. We evaluate the prototype and analyze the
results in Section VI. Finally, we discuss the related work
and give conclusions in Section VII and Section VIII
respectively.

II. MOTIVATION

In this section we discuss the motivation that drives our
research. See the network in Fig. 1(a). Assume an application
(a web service provider) has three services colored in red,
blue and brown respectively on the left-hand side, while
there are six clients using different services on the right-hand
side. Assume the red service is live streaming, blue is video
subscribing and brown is large file downloading. All three
services require high bandwidth so it is important to know
the bottlenecks in the network. Thus, the application sends
a request on the bandwidth correlation of the six flows to
the network. Meanwhile, the application does not want the
network to know about how it would manage the services.
Thus, it does not provide any further information.

The naive approach returns the slice containing 1) all the
links on the flow paths with the associated bandwidth infor-
mation, and 2) how the links are shared by the flows, as shown
in Fig. 1(a) in this case. However, this can lead to information
leaks so that malicious applications may leverage this service
to infer the network information, which jeopardizes the privacy
of the network service provider. Also as the network size
increases, the topology cannot be effectively represented.

The hose model, also known as the one-big-switch abstrac-
tion, returns the network as a single big switch as demonstrated
in Fig. 1(b). However, the application would only know
the available bandwidth on the ingress/egress “port”. If the
bottleneck is the upper middle link, it is not propagated to
the application. Thus, the application may incorrectly increase
the traffic for the blue flows without knowing that they are
correlated with r1, which leads to congestion. Because of the
TCP congestion control mechanism, congestion would reduce
the throughput of all the flows sharing the same link, leading
to an overall performance degradation.

The end-to-end abstraction as demonstrated in Fig. 1(c)
is completely useless in this case. It has the same problem
as the one-big-switch abstraction that information about the
bottleneck within the network cannot be accurately provided
to the application.

Topology aggregation [22] is a common technique to reduce
the topology size. However, it also suffers from the inca-
pability of providing accurate information about the flow
correlations. What is worse, if not aggregated correctly as
in Fig. 1(d), it may introduce unnecessary bottlenecks that
lead to suboptimal decisions right in the beginning.

A simple observation is that the lower middle link and
the lower right link are both shared by r2 and y2 only.
Thus, we can aggregate them together as a new virtual link,
as demonstrated in Fig. 1(e). One may think we can just
delete one of them. However, if the application asks for the

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 807

Fig. 1. Comparison between different network view abstractions. (a) The sliced network view. (b) One-big-switch abstraction. (c) End-to-end abstraction.
(d) Incorrect topology aggregation. (e) Simple equivalent aggregation. (f) Advanced equivalent transformation.

end-to-end routing metrics such as hop count at the same time,
deletion would return incorrect values for the two flows.

Meanwhile, if we already know that the upper middle
link would not be the bottleneck, the network view can be
further reduced, as demonstrated in Fig. 1(f). It is worth
noticing that just like the case with the simple equivalent
aggregation, we cannot just delete it if end-to-end metrics are
also requested.

Thus, the question arises on how we can determine what
kind of links can be reduced and how to reduce them correctly.
In order to answer this question, we introduce the concept
of equivalent network view and propose ONV with efficient
algorithms to compute the equivalent network view.

III. ON-DEMAND NETWORK VIEWS

In this section, we formally define the model of on-demand
network views and the theoretical foundations – the variant
routing metric algebra, and the unified network element.
We also discuss how to encode on-demand network views.

A. Basic Settings

We first formally define the models for the networks and
applications discussed in this paper, as summarized in Table I.

1) Network: A network is a graph of arbitrary topology
consisting of a set of M unified network elements or simply
element (defined in Section III-C). For each element, the net-
work can provide two kinds of routing metrics:

• A flow-independent metric represents a metric whose
value is independent of the flow correlations, i.e., the
existence of a flow would not affect the value of another
flow’s flow-independent metric sharing the same network
element. Common flow-independent metrics used in QoS
routing [27] include hop count, delay, and loss rate.1 We
also require these metrics to be linearly addictive, i.e.,
for a given metric w and two network elements a and b,
w(a + b) = w(a)⊕ w(b).

1Delay, and loss rate are sensitive to traffic volumes so their real time values
are not flow independent. However, they are considered flow independent
when measured statistically, as used in network tomography [28].

TABLE I

SYMBOLS FOR NETWORK VIEW ABSTRACTION

• A flow-correlated metric represents a network resource
that is shared among flows. Bandwidth is the most
common and also the most important flow-correlated
metric. Other shared resources such as flow entries or
middlebox-related metrics may also exist in certain sce-
narios. We require the resource constraints to be linear,
i.e., for a given resource and two flows f1 and f2,
w({f1}) + w({f2}) = w({f1, f2}).

Without loss of generality, we number the elements
from 1 to M where the j-th element is denoted as ej .
Let E = {e1, . . . , eM}. Assume each element has Ki

flow-independent metrics and Kc flow-correlated metrics.

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

808 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

TABLE II

THE VARIANT ROUTING METRIC ALGEBRA

For the j-th element ej , the k-th flow-independent metric is
denoted as pj,k and the k-th flow-correlated metric is denoted
as qj,k. Let P = (pj,k)M×Ki and Q = (qj,k)M×Kc .

2) Application: Each application contains a set of N unidi-
rectional flows, which is based on the observation that appli-
cations may have asymmetric traffic demands. An application
has a private objective function, which depends on three types
of information as listed below and is subject to some private
constraints:

• Per-flow end-to-end metrics: An end-to-end metric rep-
resents the end-to-end performance a certain flow can
obtain, such as delay, loss rate, etc. End-to-end metrics
correspond to the flow-independent metrics.

• Per-flow resource allocations: A per-flow resource allo-
cation represents how much resource (e.g., bandwidth) a
given flow can use, and corresponds to a flow-correlated
metric.

• Private variables: A private variable represents informa-
tion that is not known by the network provider, such
as CPU utilization, available memory or even bandwidth
constraints in a private network.

The flows are numbered from 1 to N and the i-th flow is
denoted as fi. Let F = {f1, . . . , fN}. Assume Ki represents
the number of end-to-end metrics, Kc represents the number of
resources, and Kp represents the number of private variables.
For the i-th flow, we use xi,k to denote its k-th end-to-end
metric and yi,k to denote its allocation for the k-th resource.
We number the private variables from 1 to Kp and denote the
k-th variable as zk.

We use U(X, Y, Z) to represent the private objective func-
tion, where X = (xi,k)N×Ki , Y = (yi,k)N×Kc , and Z =
(zk)1×Kp . Without loss of generality, we assume smaller
objective values indicate better results. For objective functions
that an application wants to maximize, we can easily construct
U ′(X, Y, Z) = −U(X, Y, Z) and use U ′ as the objective
function instead.

Assume there are Kpc private constraints, and the
i-th private constraint is denoted as gi(X, Y, Z) ≤ 0. Both U 2

and gi are arbitrary functions with the mild assumption that the
application can find the minimum objective under all private
constraints and additional linear constraints on X and Y .

3) Routing: We consider the case where the tunnels are
simple paths, i.e., there are no loops or branches. Let
ai,j denote whether fi traverses ej and routing matrix
A = (ai,j)N×M .

2Even though the correctness of this paper does not have any additional
assumption on U as long as the application can solve it under linear constraints
and the given set of private constraints, a common assumption in practice is
that the objective function is concave.

Fig. 2. Topology to demonstrate different definitions of path.

B. The Variant Routing Metric Algebra

The routing metric algebra, introduced by Sobrinho to
implement QoS-based routing [29], is based on path concate-
nation. It can be represented as (P ,S, w, ◦,⊕,�). P is the
set of paths and S is a closed set of metrics. The weight
function w maps a path from P to a given metric in S. The
concatenation operator ◦ is a binary operator on P , which
takes two paths and returns a new one. Operator ⊕ is a binary
operator on S and � is a binary relation on S.

In this paper, we introduce a variant of the routing metric
algebra. First, to better formulate the constraints on flow-
independent metrics, we introduce a new ⊗ : N × S �→
S operator to linearize the metric calculation. The opera-
tor basically means the same link is traversed for multiple
times.

Second, we relax the constraint on path concatenation in
the original algebra, by extending the meaning of path from
a walk of nodes to a set of unified network elements (defined
in Section III-C). Consider the network in Fig. 2, the only
valid path from v0 to v4 in the original QoS algebra is
〈v0, v1, v2, v3, v4〉, but with our algebra a path can be any
permutation of {e1, e2, e3, e4} (24 combinations).

We use (P ,S, w, ◦,⊕,�,⊗) to describe our variant routing
algebra. (S,⊕) is a semigroup so that ⊕ is commutative and
associative. We also require that the ⊗ operator is distributive
over ⊕. Concrete examples of some common routing metrics
are demonstrated in Table II.

C. Unified Network Elements

Traditional graph representations of a network would treat
links and nodes differently because the routing capability
is only provided on nodes (switches/routers/middleboxes).
However, since routing is not a mandatory functionality in our
network view definition, we can generalize the nodes and links
as unified network elements to simplify the representation.

For example, a deep packet inspection (DPI) middlebox
may have a maximum processing speed, which yields a
constraint on the total throughput passing through this DPI
node. From the applications’ perspective, it is not different
from a bottleneck link.

However, certain metrics may only appear on certain types
of network elements. To guarantee that these unified network
elements would not affect the results of routing metric algebra,

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 809

we must alter the weight function w as:

w∗(p) =

{
w(p) if w(p) exists

e otherwise

where e is the identity of w and some concrete examples are
given in Table II.

Links, nodes and middleboxes are transformed into unified
elements differently. For example, a duplex link should be
treated as two unified network elements because flows could
traverse it from both directions. Meanwhile, a middlebox
should be treated as a single element because flows from dif-
ferent directions are throttled by the computation capability –
a single bottleneck.

Unified network elements have several benefits. First, this
unified representation of links/nodes greatly simplifies our
analysis. Second, it provides a high-level abstraction which
focuses on the metrics’ semantics rather than how the metrics
are computed/constrained.

D. Abstract Network View

We use the symbols defined in Section III-A and formally
define the on-demand network view.

Flow-independent metrics are formulated as equations
according to the variant routing metric algebra. For example,
the hop count between two end hosts is equal to the sum of
hop counts of each link on the path. We have:

xi,k =
⊕

j

ai,j ⊗ pj,k ⇔ X = A× P.

If fi consumes the same resource on all network elements it
traverses, the flow-correlated metrics are formulated as linear
constraints. The total resource consumption of all the flows on
a single element must not exceed the available amount, i.e.,∑

i

ai,jyi,k ≤ qj,k ⇔ ATY ≤ Q.

Thus, the network view can be formulated as a tuple of
three elements: V = (A, P, Q). Based on this network view
model, an abstraction can be defined as follows:

Definition 1 (Network View Abstraction): A network view
abstraction is a transform function T which takes the original
network view V and returns an abstract view V ′, i.e.,

V ′(A, P, Q) = T (V (A, P, Q))

E. Encoding Abstract Network Views

We use flow path map and element map to efficiently encode
an abstract network view. The flow path map, as the name
suggests, is a dictionary object which maps a flow identifier
to its flow path. Each flow path is a list of element identifiers.
Each element identifier uniquely represents a unified network
element, and each appearance in a flow path indicates that the
flow traverses the corresponding network element once. The
element map is a dictionary object which maps an element
identifier to its properties. Properties are encoded in a key:
value style. The Backus-Naur Form (BNF) for our abstract
network view encoding is given in Fig. 3. An example is given

Fig. 3. The BNF for abstract network view encoding.

Fig. 4. Encoding an abstract network view for Fig. 2.

in Fig. 4, which uses the topology in Fig. 2 with one end-
to-end metric (“routingcost”) and one flow-correlated metric
(“bandwidth”). There are two flows, one from v0 to v4 and
the other from v4 to v0. Each link is denoted as two elements,
where ei = (vi−1, vi) for i ∈ [1, 4] and ei = (vi−4, vi−5) for
i ∈ [5, 8]. However, this abstract network view is not optimal
because it contains some redundant information.

Since the number of flows is fixed, the size of an abstract
network view is mostly determined by the number of elements
and their appearances in the flow path map. We use ‖V ‖ to
denote the size of a view, which is measured by the number
of unified network elements.

IV. EQUIVALENT NETWORK VIEW

In this section, we introduce equivalent network view and
an effective criterion to verify the equivalence. Furthermore,
we give a lower bound of the number of unified network
elements contained in an equivalent on-demand network view.

A. Equivalence of On-Demand Network Views

A key insight is that the returned information is the input
parameters of an objective function, whose result can help
applications make decisions. If the applications can make the
same optimized decision with an abstract network view, we
can say the abstract network view is equivalent.

Consider an application as we model in Section III-A,
the optimization problem can be formulated as

Umin = min U(X, Y, Z)
s.t X = A× P,

O ≤ ATY ≤ Q,

gi(X, Y, Z) ≤ 0, ∀i ∈ [1, Kpc].

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

810 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Let Umin(V) denote the optimal objective for a given
network view V . We define “equivalence” as follows:

Definition 2 (Network View Equivalence): Two network
views V and V ′ are equivalent, if and only if for any
application with flows F and objective function U ,
Umin(V) = Umin(V ′).

We use the symbol “∼” to represent the network view
equivalence. It can be easily proved that the network view
equivalence is an equivalence relation. We also propose the
criterion in Theorem 1 to simplify the verification.

Theorem 1 (Network View Equivalence Criterion): Two
network views V (A, P, Q) and V ′(A′, P ′, Q′) are equivalent
if and only if for any application with flows F

A× P = A′ × P ′ (1a)

R =
{
Y | ATY ≤ Q

}
=
{
Y | A′TY ≤ Q′

}
= R′ (1b)

Proof: For two network views V and V ′, we use V ∼∗ V ′

and V ∼ V ′ to represent that V and V ′ are equivalent by the
criterion and are equivalent by definition respectively. It can
be easily proved that if V ∼∗ V ′, V ∼ V ′ because they have
exactly the same domain space and thus the same image space.
For the other direction, we prove it by contradiction.

We first assume that there exists V ∼ V ′ but V �
∗ V ′,

i.e., either Equation 1a or Equation 1b does not hold.
Assume Equation 1a does not hold. For any X = A×P �=

A′ × P ′ = X ′, we find one entry that is not equal in X
and X ′, say xi,k �= x′

i,k and construct an objective function
U(X, Y, Z) = xi,k or U(X, Y, Z) = −xi,k based on whether
smaller xi,k is better. Thus, the two network views have
different optimal values and are not equivalent by definition,
which contradicts with our assumption.

Assume Equation 1b does not hold, ∃Ŷ ∈ (R \R′) ∪
(R′ \R). Without loss of generality, let Ŷ ∈ R \ R′. Since
Ŷ /∈ R′, there exist j, k such that (A′TŶ)j,k = û > qj,k.
Now we construct a linear objective function U(X, Y, Z) =
−(A′TY)j,k, and assume the optimal objectives are u and u′

respectively. We have u ≤ −û < −qj,k = u′ which means
the objective function has different optimal objective values
for the two network views. Again, we get a contradiction.

Thus, we can conclude that if V ∼ V ′, V ∼∗ V ′ and the
criterion is both sufficient and necessary.

We have proved that the network views satisfying this crite-
rion also satisfy Definition 2. Thus, it allows us to effectively
verify two network views are equivalent for applications with
arbitrary objective functions and arbitrary fine-grained routing
metrics as long as they fit in the variant routing metric algebra.

B. Lower Bound of ‖V ‖
For a given on-demand network view, there exists a set of

equivalent network views which construct an equivalent class.
To improve privacy and reduce communication overhead, one
might want to return the minimal equivalent network view.

In this section, we present two extreme cases:
1) only flow-independent information is requested, and
2) only flow-correlated information is requested.

As we demonstrate in Section V-B, the general case can be
processed in two stages and each stage corresponds to an
extreme case.

1) Lower Bound of ‖V ‖ for Flow-Independent Metrics:
When only flow-independent information is requested,
the equivalent network view only needs to provide the same
X for each flow. Since ‖V ‖ equals the column rank of A,
the equivalent network view with the minimal ‖V ‖ has the
smallest column rank of A. The problem is equivalent to the
optimal non-negative matrix factorization problem, which has
been proved to be NP-Hard [30].

2) Lower Bound of ‖V ‖ for Flow-Correlated Information:
When only flow-correlated information is requested, equiva-
lent network views should return the same feasible region,
which is determined by a set of linear constraints. Since each
constraint is essentially one network element, ‖V ‖ is directly
related to the number of constraints.

We first introduce the definition of redundant linear con-
straint by Telgen [31] and propose Theorem 2.

Definition 3 (Redundant Linear Constraint – elgen [31]):
For a linear system whose feasible region R =

{
�x | A�x ≤ �b

}
,

the k-the constraint Ak�x ≤ bk is redundant if and only if the
feasible region Rk = {�x | Ai�x ≤ bi, i �= k} is equal to R,
i.e. Rk = R.

Theorem 2: If only flow-correlated information is
requested, ‖V ‖ is minimal if and only if the corresponding
constraint set C = {cj|cj : AT

jY ≤ Qj} has no redundant
constraints.

Proof: ⇒: Consider the opposite that ‖V ‖ is minimal but
C contains redundant constraints. According to the definition
of redundant constraints by Telgen [31], we can remove the
redundant constraints but still obtain the same feasible region.
Thus, we have a network view with a smaller ‖V ‖ and it leads
to a contradiction.
⇐: Consider the opposite that C contains no redundant

constraints but ‖V ‖ is not minimal. Let C′ represents the
equivalent constraint set of the minimal size and ‖C′‖ <
‖C‖. Since C and C′ have the same feasible region, they
also have the same feasible region as C ∪ C′. Since C
contains no redundant constraints, there exists at least one
c∗ ∈ (C ∪C′) \ C which is redundant. Thus, C′ contains
a redundant constraint and cannot have the minimal num-
ber of element, which leads to a contradiction with our
assumption.

The problem of finding redundant linear constraints has
been widely studied. For example, Paulraj and Sumathi [32]
have summarized several algorithms to find the redundant
constraints. Since there exists polynomial time algorithms for
linear programming [33], the problem can also be solved in
polynomial time.

V. EQUIVALENT NETWORK VIEW TRANSFORMATIONS

In this section, we introduce ONV, the On-demand Network
View Abstraction which conducts equivalent transformations to
obtain an equivalent network view. ONV consists of two algo-
rithms, namely equivalent element aggregation and equivalent
element decomposition. We prove both algorithms guarantee
the equivalence condition, and analyze how they can improve
efficiency and privacy.

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 811

Fig. 5. Equivalent element aggregation.

Algorithm 1: Equivalent Element Aggregation

Input: V (A, P, Q)
Output: V ′(A′, P ′, Q′)

1 Function EQUIVAGGREGATION(V)
2 V ← {

Vj | Vj ←
(
Aj , Pj , Qj

)
, 1 ≤ j ≤M

}
;

3 G ← GROUPBY(V , Vj ⇒
(
vj ← Aj , Vi

)
);

4 for Gj ∈ G do
5 V ′

j ← AGGREGATE(vj , {Vmj,1 , . . . , Vmj,|Gj |});
6 M ′ ← |G|;

7 V ′ ←

⎛
⎜⎝[A′1 · · · A′M ′]

,

⎡
⎢⎣

P ′
1
...

P ′
M ′

⎤
⎥⎦ ,

⎡
⎢⎣

Q′
1

...
Q′

M ′

⎤
⎥⎦
⎞
⎟⎠;

8 return V ′

9 Function AGGREGATE(vj , {Vmj,1 , . . . , Vmj,|Gj |})
10 A′j = vj ;

11 P ′
j ←

[⊕
i

pmj,i,1, . . . ,
⊕

i

pmj,i,Ki

]
;

12 Q′
j ←

[
min

i
qmj,i,1, . . . , min

i
qmj,i,Kc

]
;

13 return
(
A′j , P ′

j , Q
′
j

)

A. Equivalent Element Aggregation

In this section, we introduce the equivalent aggregation.
The example in Fig. 5 demonstrates the intuition: There are
three flows with different colors and only they traverse both
e1 and e2, so that we “aggregate” them together as a single
element e∗. We give an algorithm in Algorithm 1 which
guarantees that the resulted network view is equivalent to
the original one. We analyze its efficiency and prove its
correctness.

The network view is represented as row vectors (com-
ponents), as demonstrated in Line 2. Line 3 groups the
j-th component Vj(Aj , Pj , Qj) using the j-th row vector in
A, Aj , as the key. M ′ denotes the number of groups, and
the index of the k-th member in the j-th group is denoted
as mj,k. Line 5 computes the aggregation of the components
in each group. Finally Line 7 constructs the new network
view by merging all the aggregated components. For each

component Vj , the time complexity for the grouping and
the aggregation is O(N(Ki + Kc)) and O(N(Ki + Kc))
respectively while the MERGE process is totally logical, which
yields a total time of O(MN(Ki + Kc)).

Now we prove the element aggregation algorithm is correct,
in the sense that it maintains the equivalence condition.

Theorem 3: V ′ ← EQUIVAGGREGATION(V), V ′ ∼ V .
Proof: Assume gj,i represents the index of the

i-th components in Gj , and let bj ← mini mj,i and cj,k ←
argmin qmj,i,k.

First we check Equation 1a is met. Since X = A× P , we
have

xi,k

=
⊕

j

ai,j ⊗ pj,k =
⊕

1≤j′≤M ′

⎛
⎝ ⊕

1≤l≤|Gj′ |
ai,mj′,l

⊗ pmj′,l,k

⎞
⎠

=
⊕

1≤j′≤M ′

⎛
⎝ ⊕

1≤l≤|Gj′ |
ai,bj′ ⊗ pmj′,l,k

⎞
⎠

=
⊕

1≤j′≤M ′
ai,bj′ ⊗

⎛
⎝ ⊕

1≤l≤|Gj′ |
pmj′,l,k

⎞
⎠

=
⊕

1≤j′≤M ′
ai,bj′ ⊗ p′j′,k = x′

i,k.

The key steps are based on the facts that ⊕ is transi-
tive and commutative, ⊗ is distributive over ⊕, and ∀l ∈
[1, |Gj′ |], ai,bj′ = ai,mj′,l

.
Now we check Equation 1b. We have

R =
{
Y | AT

jY
k ≤ qj,k, ∀j, k}

R′ =
{

Y | A′T
jY

k ≤ q′j,k, ∀j, k
}

=
{

Y | A′T
cj′,k

Y k ≤ qcj′,k,k, ∀j′, k
}

.

Since the constraints of R′ is a subset of R, R ⊆ R′. If R′ �=
R, ∃Ŷ ∈ R′ \ R, meaning Ŷ at least violates one constraint
in R, say for ĵ and k̂, i.e.,

AT
ĵ
Ŷ k̂ > qĵ,k̂ ≥ min

l
qmĵ′,l,k̂

= qcĵ,k̂,k̂,

which means Ŷ also violates one constraint in R′ and leads
to contradiction with our assumption. So we have R = R′.

By Theorem 1, V ′ ∼ V .

B. Equivalent Element Decomposition

In this section, we introduce the details of equivalent
element decomposition, which can substantially improve the
performance of equivalent element aggregation.

Algorithm 1 guarantees the equivalence condition which
is important to prove the correctness of ONV, however,
the condition to aggregate components is not easy to be
satisfied without further processing. Thus, we need to conduct
another equivalent transformation in practice, namely equiva-
lent element decomposition. An example of equivalent element
decomposition is given in Fig. 6, where only the red flow
traverses ea, only the blue flow traverses eb and only the red

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

812 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 6. Equivalent element decomposition.

and the blue flows traverse ec. The three elements have the
following metrics:

ea : routingcost = 1, bandwidth = 100Mbps

eb : routingcost = 2, bandwidth = 100Mbps

ec : routingcost = 3, bandwidth = 200Mbps

Aa =
[
1
0

]
, Ab =

[
0
1

]
, Ac =

[
1
1

]
.

According to grouping condition, there will be three differ-
ent groups. But we can make the observation that since the
constraint for ec: bw1 + bw2 ≤ 200 is redundant, we can
decompose ec as two unified network elements ec1 and ec2

where

ec1 : routingcost = 3, bandwidth = 200Mbps

ec2 : routingcost = 3, bandwidth = 200Mbps

Ac1 =
[
1
0

]
, Ac2 =

[
0
1

]
.

After ec is decomposed, we can invoke EQUIVAGGREGATION

(Algorithm 1) and ec1 and ec2 can be aggregated with a and b
respectively.

Theorem 4 gives the condition when an element can be
safely decomposed without affecting the equivalence condi-
tion. The efficiency and privacy of equivalent decomposition
depend on 1) how to identify redundant components, and
2) how to find the “basis”. The first step corresponds to finding
the minimal equivalent network view with only flow-correlated
information, as discussed in Section IV-B.2, while the second
step is similar to finding the minimal equivalent network view
with flow-independent information, with the constraints that
non-redundant network elements must be contained. Since
the second step has been proved to be NP-Hard, in this
paper, we use a heuristic approach which aims to simplify
the selection of basis, as introduced in Algorithm 2.

Theorem 4: For Vj(Aj , Pj , Qj), we say Vj is redundant if
and only if AT

jY
k ≤ qj,k is redundant for all k. If and only

if Vj is redundant, we can construct an equivalent network
view V ′ = V \ Vj ∪ {Vj,l} where Vj is decomposed as
Vj,l(A′l, P ′

l , Q
′
l) with Aj =

∑
l A

′l, Pj = P ′
l and Qj = Q′

l.
Proof: We still consider the criteria Equation 1a and

Equation 1b and use the same symbols in Theorem 3.

First we can prove criterion Equation 1a holds whether Vj

is redundant or not.

xi,k =
⊕

u

ai,u ⊗ pu,k =
⊕
u�=j

ai,u ⊗ pu,k + ai,j ⊗ pj,k

=
⊕
u�=j

ai,u ⊗ pu,k +

(∑
l

a′
i,l

)
⊗ pj,k

=
⊕
u�=j

ai,u ⊗ pu,k +
⊕

l

a′
i,l ⊗ pj,k

=
⊕
u�=j

ai,u ⊗ pu,k +
⊕

l

a′
i,l ⊗ p′l,k = x′

i,k.

For Equation 1b, first we consider the case when Vj is
redundant but V � V ′. Vj is redundant so that ∀k, AT

jX
k ≤

qj,k is redundant. According to Definition 3, we have feasible
regions R = Rj = R′ for all k. Since we have already proved
that Equation 1a holds, according to Theorem 1, V ∼ V ′

which leads contradiction.
If Vj is not redundant but V ∼ V ′, we can similarly

construct a contradiction between the definition of redundancy
and the equivalence criterion.

Thus, we have proved that Vj can be equivalently decom-
posed if and only if Vj is redundant.

We introduce the concept of dominance of components.
From Theorem 4, we can easily conclude that if an element
can be decomposed, it dominates all the elements in the basis.

Definition 4 (Dominance of Components): We say a com-
ponent Vj is dominated by another component Vj′ , if and
only if, ∀i, ai,j ≤ ai,j′ .

Now we present the details of Algorithm 2. Line 2 iden-
tifies the set of decomposable components D according to
Theorem 4, i.e. ∀Vj ∈ D, Vj is redundant. In each iteration
(Line 4-11), we try to decompose a decomposable elements
into other network elements greedily, in the sense that ∀l,
Vl is dominated by Vj , we decompose Vj to Vl and its
complement. If the routing matrix for Vj is empty, it means
Vj is decomposed to a set of Vls. Otherwise, Vj cannot be

Algorithm 2: Equivalent Element Decomposition

Input: V (A, P, Q)
Output: V ′(A′, P ′, Q′)

1 Function EQUIVDECOMPOSITION(V,F)
2 D ← FINDEQUIVDECOMPOSABLE(V)
3 V ′ ← V
4 foreach Vj ∈ D do
5 V ′ ← V ′ \ {Vj}
6 foreach Vl ∈ V ′ do
7 if Vj can be decomposed to Vl then
8 Vl ← (Al, Pl ⊕ Pj , Ql)
9 Vj ← (Aj −Al, Pj , Qj)

10 if Aj �= �0 then
11 V ′ ← V ′ ∪ {Vj}
12 return V ′

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 813

Fig. 7. The architecture of ONV.

decomposed to existing components so its remnant must be
added back (Line 11).

Finally we invoke EQUIVAGGREGATION(V ′) to aggregate
V ′

j with the same Aj , which is also proved to maintain the
equivalence condition as in Theorem 3. Thus, Algorithm 2
returns the equivalent network view.

For each iteration, the decomposition needs to check
whether a component is dominated by another one, which may
take O(N) time and yield a total running time of O(M2N2).
Since we have assumed that flows only traverse simple paths,
we encode the routing matrix for a component, which is
a binary vector of size N × 1, as a binary integer. This
pre-processing step takes O(MN) time. Thus, the dominance
can be verified in O(log(N)) time using bit and operation.
The update on Line 8 takes only O(Ki) time. The subtraction
on Line 9 can be done using the bit xor operation, which
also takes O(log(N)) time. The routing matrix Aj can be
reconstructed in O(N) time in the outer loop. There are at
most M2 inner iterations and M outer iterations, so the total
execution time is O(M2(log(N) + Ki) + MN).

C. Privacy Enhancement

The equivalent aggregation and equivalent decomposition
are equal to matrix transformations. While the application can
only infer the network elements which cannot be decomposed
without jeopardizing feasibility or optimality, it is impossible
to infer the complete original network state without knowing
the exact value of the transform matrix. Thus, Algorithm 2
can improve the privacy and reduce information leak.

It is worth noting that ONV does not require applications
to specify private information, e.g. private constraints and
objective functions. Thus, it also protects the privacy of the
applications.

D. System Implementation

The architecture of ONV is demonstrated in Fig. 7. User
requests are first sent to the path computation engine, which
obtains the routing matrix A. The ONV engine also pulls the
attribute vectors, i.e., P and Q from a monitoring component.

EQUIVAGGREGATION is first executed to avoid corner cases
in finding redundant resource constraints. If no flow-correlated
information is requested, the FINDEQUIVDECOMPOSABLE

function returns all network elements. Otherwise, it uses
the algorithm in [31] to find network elements with redun-
dant constraints. Finally, EQUIVDECOMPOSITION is executed
and the resulted equivalent network view is encoded as in
Section III-E and returned to the user.

VI. EVALUATION

In this section, we evaluate ONV extensively to answer
the following questions: 1) Can ONV achieve feasibility and
optimality for heterogeneous objective functions? 2) How
much can ONV simplify the network view? 3) How fast can
ONV compute the abstract on-demand network view?

A. Experimental Setup

In this section, we introduce the general experimental setup
of our evaluations and leave the methodologies for each
experiment to the corresponding section.

Topology and Metrics: We use real-world topologies from
two data sets: the topology zoo [34] and rocketfuel [35]. If a
topology already has bandwidth information, we use the values
directly. Otherwise, we generate stepped values for links
from edge to core. We allocate the “routingcost” randomly,
following the standard distribution around the reciprocal of
bandwidth. The values are multiplied by a given constant to
avoid precision issues. For each topology, we generate three
different routing cost distributions.

Algorithms to Find Redundant Constraints: To find the
redundant network elements, we use the linear programming
method introduced in [32].

Abstractions: We use six different network abstractions.
1) The raw network view is computed by the naive

approach which contains all network elements on the
paths.

2) Three various network views are computed by ONV
with different guarantees. The onv-bw view only
guarantees the equivalence of flow-correlated network
resources. All decomposable network elements can be
directly removed and its ‖V ‖ is equal to the number of
non-decomposable network elements. The onv-rc view
only guarantees the equivalence of flow-independent
metrics so it considers all network elements to be
decomposable, i.e., Line 2 of Algorithm 2 returns V .
The onv-both view guarantees equivalent network views
where Line 2 of Algorithm 2 finds redundant network
elements using an paralleled implementation of the
algorithm in [31].

3) The one-big-switch (as in SDX [36]) view removes all
network elements except the ingress/egress ones.

4) The e2e view (as in ALTO [21]) creates a virtual
network element for each flow whose attributes are
calculated with the variant routing algebra.

Flow Requests: We have 7 groups with different num-
bers of flows. There are three types of requests, depending
on the metrics: routingcost-only (rc) bandwidth-only (bw),
and hybrid. As the names suggest, they represent the cases
where 1) only flow-independent metrics are requested, 2) only
flow-correlated metrics are requested, and 3) both metric types
are requested. The flows used in our benchmark are randomly
generated based on the server-client communication pattern.
We select a given subset of endpoints as servers, and for each
server, we pick random endpoints as clients.

Runtime and Data Collection: The prototype system is built
with Python and uses the PuLP framework. The COIN Branch

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

814 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 8. Normalized results for different objective functions using different abstractions. (a) Results for weighted throughput (wpt). (b) Results for flow
completion time (fct). (c) Results for total routing cost (trc).

and Cut (CBC) solver is used solve linear programming
problems. The evaluations are emulated on a server with Linux
kernel 3.19.0-25, 6 quad-core Intel(R) Xeon(R) E5-2620 v3
@2.40GHz CPU and 128 GB memory.

We collect the results for each 〈topology+metrics, flow
size+distribution, metric types〉 combination. For each com-
bination, we generate 10 different samples and calculate the
average, standard deviation, the minimum and the maximum.

B. Optimality and Feasibility for Heterogeneous Objectives

To understand how different network views may have an
impact on the optimality and feasibility of an application’s
objective functions, we conduct the following evaluation with
multiple objective functions.

Objective Functions: We consider three objective functions
from existing researches: 1) For the wtp objective function
case, we give each flow a random weight and optimize the
weighted throughput [37]. 2) For the fct objective function
case, we give each flow a random data size and minimizes
the total flow completion time [38]. 3) For the trc objective
function case, we divide hosts into client and server groups.
For each host in the client group, it selects the server node
with the smallest routing cost. We sum the total routing cost
as the value of the objective function.

Topology and Metrics: We use the Kdl topology (752 nodes,
1790 links) from the topology zoo. Since the coefficients of
the objective functions are generated randomly, the values of
objective functions may not be useful. Thus, we normalize the
results as follows:

Normalized =
Optimal objective using a given view

Optimal objective using raw
.

The normalized results serve as indicators of whether the
corresponding network view guarantees optimality and fea-
sibility. Consider the optimization problem is to maximize a
given objective function (as in wpt), if the normalized objective
value opt > 1, it means that the objective value is larger
than the real optimal value and thus the value is infeasible.
On the other hand, if the normalized objective value opt < 1,
it means that the objective value is smaller than the real
optimal one and thus the value is suboptimal. For optimization
problems that minimize a given objective function (fct and trc),
the conclusion is the opposite. The conditions of whether a
network view is feasible and optimal are listed in Table III.

TABLE III

CONDITIONS FOR FEASIBILITY AND OPTIMALITY

As demonstrated in Fig. 8, we can see that 1) one-big-switch
abstraction can lead to infeasible solutions in all three cases; 2)
end-to-end abstraction achieves both optimality and feasibility
for trc but can lead to infeasible solutions for wpt and fct
objective functions, indicating that it can provide accurate
flow-independent information but very inaccurate information
on flow-correlated resource (shared bottlenecks); 3) onv-both
achieves both optimality and feasibility for all cases while
the two variants also achieves optimality and feasibility for
their targeted use cases, which indicates that ONV can provide
accurate information on both flow-correlated information (onv-
bw and onv-both), flow-independent information (onv-rc and
onv-both) and the two types of metrics combined (onv-both).

C. Network Simplification

In this section, we demonstrate how much ONV can sim-
plify the network and reduce the communication overhead with
the following settings:

Metrics: We use the normalized ‖V ‖ to evaluate how much
a network view is simplified and use the number of bytes in the
encoded JSON string to evaluate the communication overhead
of an abstract network view.

As we can see form Fig. 9, ONV can simplify the network
significantly. Specifically, the bandwidth-equivalent network
view only uses less than 40% of the network elements in the
original one for all six topologies except Colt. It even uses
less network elements than the one-big-switch abstraction in
certain topologies. While the routingcost-equivalent and the
completely equivalent network views typically contain more
elements, they can still reduce 50% to 80% of the network
information for 200 flows, and 20% to 60% of the network
information even for more than 3,000 flows.

We also analyze the factors that may determine the sim-
plification results. From Fig. 9, we can see that the number
of elements increases as the number of flows increases. Thus,
we consider the largest flow requests, i.e., with 3,200 flows

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 815

Fig. 9. Normalized ‖V ‖ for different topologies.

TABLE IV

TOPOLOGIES AND THE ABSOLUTE RESULTS FOR 3200 FLOW REQUESTS

Fig. 10. Computation time. (a) Computation time of EQUIVAGGREGATION. (b) Computation time of EQUIVDECOMPOSITION. (c) Computation time
breakdown.

and summarize the absolute values in Table IV.3 The relative
size of a given view is calculated as proportion of network
elements compared with the one in the raw view, i.e.,

relative size =
‖V ‖ of a given view
‖V ‖ of the raw view

.

As shown in Table IV, the network elements revealed in
abstract network views are much less than the ones contained
in the topologies, suggesting that on-demand network views
can protect the privacy of network providers while providing
useful information to network-aware adaptive applications.

D. Computation Time

Methodology: The time complexity depends on both the
number of flows N and the number of network elements
M . We choose 3 different numbers of flows: 800 (20 servers
and 40 clients per server), 1800 (30 servers and 60 clients
per server) and 3200 (40 servers and 80 clients per server).
For each M , we generate 10 samples for topologies AS 1221,
AS 2914 and AS 7018. For equivalent decomposition, we also
turn on/off the binary code optimization.

3Edges are bidirectional so the total number of elements in a topology is
twice the number of edges.

As we can see in Fig. 10(a), the time curve fits well with
a linear function of the number of network elements M . The
coefficients of x also roughly grows linearly as the number of
flows N , which demonstrates the time complexity analysis for
Algorithm 1 is correct.

Also, we can also see that in Fig. 10(b), the time curve also
fits with a quadratic function of M . While we cannot derive
directly from the coefficients that the time complexity is linear
with the logarithm of N , the comparison to an unoptimized
implementation (i.e., using linear scan as in Definition 4)
demonstrates an improvement of 40 to 60.

Finally we demonstrate how much each component
contributes to the total execution time. As we can see
in Fig. 10(c), the total execution is less than a minute even
for resource reservation for a lot of flows in very large
scale networks. In particular, both EQUIVAGGREGATION

(denoted as aggr) and EQUIVDECOMPOSITION (denoted
as decomp) only take a very small proportion. While the
time is sufficient to traditional traffic engineering which
may take hours or days, the operator can optionally skip the
equivalent decomposition procedure if the application-
layer scheduler demands smaller traffic engineering
intervals.

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

816 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

E. Summary

In this section, we evaluate the performance of ONV thor-
oughly. We demonstrate that ONV guarantees both feasibility
and optimality for heterogeneous objective functions. ONV
can substantially reduce the number of leaked information
and also the communication overhead (up to 4.5x improve-
ment). It can produce an abstract on-demand network view
within a minute for very large scale networks (>20,000 nodes
and >25,000 edges) and flow requests (>3,000 flows). Thus,
ONV effectively enables collaborative optimization with non-
administrative network-aware adaptive applications.

VII. RELATED WORK

A. Demands for Network Views

The demands for being network-aware are quite com-
mon. For services built on top of the Internet, user
experience depends heavily on the quality of networking
service [39]–[41]. Previous studies [42] have already shown
that obtaining end-to-end metrics can significantly improve the
user experience of peer-to-peer services and content delivery
networks.

Meanwhile, several studies [38], [43], [44] have also
addressed the need to conduct flow scheduling over the net-
work, suggesting the importance of obtaining the correlations
between different data transfers. Such demands are usually
associated with traffic with large volumes, such as inter-data
center communication, e.g, Google’s globally-deployed B4 [1]
system and global data intensive science networks [26]. Feed-
ing these applications with more accurate network information
allows them to make more intelligent operating decisions.
Network information is also used to optimize video streaming
for multiple objectives, such as QoE [45] and fairness [46].

Another example where being aware of the network per-
formance can be beneficial is fine-grained routing. Latest
approaches such as the Software Defined Internet Exchange
point (SDX) [36] have enabled Autonomous Systems to set
up fine-grained forwarding rules. With the ability to query the
expected network performance, an AS would be able to make
routing decisions based not only on the cost, but also on the
real-time quality of service. Meanwhile, such information can
also be provided to QoS-based routing protocols [27], [29].

SOL [47] and CoFlow [38] are SDN-based network opti-
mization frameworks which provide abstractions to simplify
the modeling of network optimization problems. However,
it would require the optimizer to provide all the information to
the network, which jeopardizes the privacy. General collabo-
rative optimization [48]–[50] typically protects the privacy by
multiplying a monomial matrix. ONV enables collaborative
optimization by providing the network views to the optimizer,
while conducting equivalent transformations to reduce the
communication overhead as well as protect the privacy.

B. Providing Network View

The most straight-forward way of providing network views
is to use its graph representation. Several routing proto-
cols [17]–[20] including OSPF and IS-IS conceptually provide
such an abstraction of the network and it is also adopted by the

I2RS (Interface to Routing System) IETF Working group [51].
Modern SDN controllers [9]–[12] also provide the global view
using the annotated graph model.

The hose model [15] is first introduced for VPN provision-
ing in 1999. Each endpoint is associated with a hose in this
model and the details of the actual VPN tunnels are hidden.
It is sometimes referred to as the one-big-switch in the context
of SDN because the network is abstracted as a single logical
switch in this model. Because of its simplicity, the hose model
is widely used, for example, by many network programming
languages [52], [53]. SDX also uses this model to encapsulate
the underlying network topology. Data center fabrics are
highly customized for scalability [16] and can be modeled as
a non-blocking switch where congestion only occurs on access
links [23], thus, the one-big-switch abstraction is also widely
used for data center flow scheduling and tenant resource
provisioning [38], [43], [44].

The mesh model is mostly used by web-based applications
or measurement frameworks, which have no control over
the network. The mesh model consists of several flows (host
pairs) and provides a single mesh for each flow (pair) with
the associated metrics. PerfSONAR [54], Meridian [55] and
ClosestNode [56] are some concrete examples which provide
such end-to-end network views based on measurement,
while P4P [42] and the ALTO (Application-Layer Traffic
Optimization) protocol [21] are leveraging the network
providers’ information.

ONV is similar to ALTO in the sense that in both cases
information is provided by the network to non-administrative
applications, which is likely to achieve better accuracy. Mean-
while, we overcome the limitations of ALTO by adopting
the equivalence abstraction to provide fine-grained metrics,
in particular the flow correlations, which makes it possible
to suffice the demands from a broader range of applications.
This underlying philosophy also distinguishes ONV from other
(especially QoS related) routing protocols and network views
based on topological aggregation [19].

Recently Nikolenko et al. [57] has introduced an algorithm
to simplify the network topologies, which is also based on
the principle of equivalence and equivalent network trans-
formations. Compared with their work, we have a different
definition of equivalence originated from the applications’
perspective. While their work is still transforming the topol-
ogy, our equivalent transformations are based on a more
abstracted network representation which allows us to conduct
more sophisticated transformations beyond the topological
constraints. Similar ideas are also applied in some newer
researches [58], [59].

VIII. CONCLUSION

In this paper, we systematically study the problem of provid-
ing an accurate on-demand network view for application-layer
multi-flow optimization. Our abstraction is based on the princi-
ple of equivalence which guarantees generality, feasibility and
optimality. We design the ONV framework to construct equiv-
alent network views and evaluate its performance compared
with some well-known network view abstractions. Currently,
ONV leverages the SDN technology to provide the network

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

GAO et al.: OBJECTIVE-DRIVEN ON-DEMAND NETWORK ABSTRACTION FOR ADAPTIVE APPLICATIONS 817

view service in a centralized way, and leaves distributed
on-demand network view as a future extension.

ACKNOWLEDGMENT

The authors would like to thank C. Gu, J. Zhang,
S. Chen, X. Lin, H. Wang, and H. Du for their help during
the preparation of the paper. This paper is an extension to
a conference paper [60], which is also published as a poster
earlier [61]. They would also like to thank the anonymous
TON reviewers for their valuable feedback. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry
of Defence or the U.K. Government. The U.S. and U.K. Gov-
ernments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
hereon.

REFERENCES

[1] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in Proc. ACM SIGCOMM Conf. (SIGCOMM) New York, NY,
USA, 2013, pp. 3–14.

[2] Official Public Website for the ATLAS Experiment at CERN,
CERN, Meyrin, Switzerland, 2018. [Online]. Available:
https://home.cern/science/experiments/cms

[3] The Compact Muon Solenoid Experiment, CERN, ATLAS Exp., Geneva,
Switzerland, 2018. [Online]. Available: https://atlas.cern/

[4] AT&T Vision Alignment Challenge Technology Survey—AT&T Domain
2.0 Vision White Paper,” AT&T, Dallas, TX, USA, 2013.

[5] OSCARS, Lawrence Berkeley Nat. Lab., Energy Sci. Netw., Berkeley,
CA, USA, 2018. [Online]. Available: https://www.es.net/engineering-
services/oscars/

[6] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET:
WAN-aware optimization for analytics queries,” in Proc. 12th USENIX
Symp. Oper. Syst. Design Implement. (OSDI). Savannah, GA, USA:
USENIX Association, 2016, pp. 435–450.

[7] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with Varys,” in Proc. ACM Conf. SIGCOMM, New York, NY, USA,
2014, pp. 443–454.

[8] J. Rehn et al., “PhEDEx high-throughput data transfer management
system,” in Proc. Comput. High Energy Nucl. Phys. (CHEP), 2006,
pp. 1–4.

[9] N. Gude et al., “NOX: Towards an operating system for networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

[10] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. OSDI, vol. 10, 2010, pp. 1–6.

[11] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
3rd Workshop Hot Topics Softw. Defined Netw. (HotSDN), New York,
NY, USA, 2014, pp. 1–6.

[12] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a model-driven SDN controller architecture,” in Proc. IEEE Int. Symp.
World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.

[13] S. Gao, Z. Peng, B. Xiao, A. Hu, and K. Ren, “FloodDefender:
Protecting data and control plane resources under SDN-aimed DoS
attacks,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2017,
pp. 1–9.

[14] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),
document RFC 4271, 2005.

[15] N. G. Duffield et al., “A flexible model for resource management in
virtual private networks,” in Proc. ACM Conf. Appl., Technol., Archit.,
Protocols Comput. Commun. (SIGCOMM), New York, NY, USA, 1999,
pp. 95–108.

[16] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. SIGCOMM ACM SIGCOMM Conf. Data Commun., New York,
NY, USA, 2009, pp. 51–62.

[17] J. Moy, OSPF Version 2, document RFC 2178, 1997. [Online]. Avail-
able: https://tools.ietf.org/html/rfc2178

[18] D. Oran, OSI IS-IS Intra-domain Routing Protocol, document RFC 1142,
1990.

[19] T. Vu, A. Baid, H. Nguyen, and D. Raychaudhuri, “EIR: Edge-aware
interdomain routing protocol for the future mobile Internet,” WINLAB,
Rutgers Univ., New Brunswick, NJ, USA, Tech. Rep. WINLAB-TR-414,
2013.

[20] W. C. Lee, “Topology aggregation for hierarchical routing in ATM
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 25, no. 2,
pp. 82–92, 1995.

[21] R. Alimi, Y. Yang, and R. Penno, Application-Layer Traffic Optimization
(ALTO) Protocol, document RFC 7285, 2014.

[22] S. Uludag, K.-S. Lui, K. Nahrstedt, and G. Brewster, “Analysis of
topology aggregation techniques for QoS routing,” ACM Comput. Surv.,
vol. 39, no. 3, p. 7, 2007.

[23] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. O. Guedes,
“Gatekeeper: Supporting bandwidth guarantees for multi-tenant data-
center networks,” in Proc. WIOV, 2011, pp. 1–8.

[24] A. Kumar et al., “BwE: Flexible, hierarchical bandwidth allocation
for WAN distributed computing,” in Proc. ACM Conf. Special Inter-
est Group Data Commun. (SIGCOMM), New York, NY, USA, 2015,
pp. 1–14.

[25] H. Xu and B. Li, “Joint request mapping and response routing for
geo-distributed cloud services,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 854–862.

[26] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The sci-
ence DMZ: A network design pattern for data-intensive science,” Sci.
Program., vol. 22, no. 2, pp. 173–185, 2014.

[27] H. Geng, X. Shi, X. Yin, Z. Wang, and H. Zhang, “Algebra and
algorithms for efficient and correct multipath QoS routing in link state
networks,” in Proc. IEEE 23rd Int. Symp. Qual. Service (IWQoS),
Jun. 2015, pp. 261–266.

[28] M. Rabbat, R. Nowak, and M. Coates, “Multiple source, multiple
destination network tomography,” in Proc. IEEE INFOCOM, vol. 3,
Mar. 2004, pp. 1628–1639.

[29] J. L. Sobrinho, “Algebra and algorithms for QoS path computation and
hop-by-hop routing in the Internet,” IEEE/ACM Trans. Netw., vol. 10,
no. 4, pp. 541–550, Aug. 2002.

[30] S. A. Vavasis, “On the complexity of nonnegative matrix factorization,”
SIAM J. Optim., vol. 20, no. 3, pp. 1364–1377, Jan. 2010.

[31] J. Telgen, “Identifying redundant constraints and implicit equalities
in systems of linear constraints,” Manage. Sci., vol. 29, no. 10,
pp. 1209–1222, 2002.

[32] S. Paulraj and P. Sumathi, “A comparative study of redundant constraints
identification methods in linear programming problems,” Math. Prob-
lems Eng., vol. 2010, Sep. 2010, Art. no. 723402.

[33] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” in Proc. 16th Annu. ACM Symp. Theory Comput., 1984,
pp. 302–311.

[34] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[35] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with Rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1,
pp. 2–16, Feb. 2004.

[36] A. Gupta et al., “SDX: A software defined Internet exchange,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 551–562, 2015.

[37] Y. Bartal et al., “Online competitive algorithms for maximizing weighted
throughput of unit jobs,” in Proc. Annu. Symp. Theor. Aspects Comput.
Sci. Berlin, Germany: Springer, 2004, pp. 187–198.

[38] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for
cluster applications,” in Proc. 11th ACM Workshop Hot Topics Netw.
(HotNets-XI), New York, NY, USA, 2012, pp. 31–36.

[39] R. K. Mok, E. W. W. Chan, and R. K. C. Chang, “Measuring the quality
of experience of HTTP video streaming,” in Proc. 12th IFIP/IEEE Int.
Symp. Integr. Netw. Manage. (IM) Workshops, May 2011, pp. 485–492

[40] N. Zhang, Y. Lee, M. Radhakrishnan, and R. K. Balan, “GameOn: P2P
gaming on public transport,” in Proc. MobiSys, 2015, pp. 105–119.

[41] Y. Lee, S. Agarwal, C. Butcher, and J. Padhye, “Measurement and
estimation of network QoS among peer Xbox 360 game players,” in
Proc. Int. Conf. Passive Active Netw. Meas. Berlin, Germany: Springer,
2008, pp. 41–50.

[42] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silber-
schatz, “P4P: Provider portal for applications,” in Proc. ACM SIG-
COMM Conf. Data Commun. (SIGCOMM) New York, NY, USA, 2008,
pp. 351–362.

[43] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, vol. 10, 2010, p. 19.

[44] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM Conf. SIGCOMM, New York, NY, USA, 2013,
pp. 435–446.

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

818 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

[45] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race,
“Towards network-wide QoE fairness using openflow-assisted adap-
tive video streaming,” in Proc. ACM SIGCOMM Workshop Future
Hum.-Centric Multimedia Netw. (FhMN), New York, NY, USA, 2013,
pp. 15–20.

[46] G. Cofano et al., “Design and performance evaluation of network-
assisted control strategies for HTTP adaptive streaming,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 13, no. 3s, pp. 42:1–42:24,
Jun. 2017.

[47] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using SOL,” in Proc. 13th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2016, pp. 223–237.

[48] Y. Hong, “Privacy-preserving collaborative optimization,”
Ph.D. dissertation, Dept. Manage. Sci. Inf. Syst., Rutgers Univ.,
New Brunswick, NJ, USA, 2013.

[49] J. Vaidya, “Privacy-preserving linear programming,” in Proc.
ACM Symp. Appl. Comput. (SAC), New York, NY, USA, 2009,
pp. 2002–2007.

[50] J. Li and M. J. Atallah, “Secure and private collaborative linear pro-
gramming,” in Proc. Collaborative Comput., Netw., Appl. Worksharing,
IEEE CollaborateCom Int. Conf., Nov. 2006, pp. 1–8.

[51] J. Medved et al., A Data Model for Network Topologies, docu-
ment draft-ietf-i2rs-yang-network-topo-20.txt, Internet Engineering Task
Force, Internet-Draft draft-ietf-i2rs-yang-network-topo-11, Feb. 2017.

[52] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software defined networks,” in Proc. 10th USENIX Symp. Netw. Syst.
Design Implement. (NSDI). Lombard, IL, USA: USENIX Association,
2013, pp. 1–13.

[53] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
Simplifying SDN programming using algorithmic policies,” in Proc.
ACM SIGCOMM Conf. SIGCOMM, New York, NY, USA, 2013,
pp. 87–98.

[54] A. Hanemann et al., “PerfSONAR: A service oriented architecture for
multi-domain network monitoring,” in Proc. Int. Conf. Service-Oriented
Comput. Berlin, Germany: Springer, 2005, pp. 241–254.

[55] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A lightweight network
location service without virtual coordinates,” in Proc. Conf. Appl.,
Technol., Archit., Protocols Comput. Commun. (SIGCOMM), New York,
NY, USA, 2005, pp. 85–96.

[56] B. Wong and E. G. Sirer, “ClosestNode.Com: An open access, scalable,
shared geocast service for distributed systems,” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 1, pp. 62–64, Jan. 2006.

[57] S. I. Nikolenko, K. Kogan, and A. F. Anta, “Network simplification pre-
serving bandwidth and routing capabilities,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., May 2017, pp. 1–9.

[58] Q. Xiang et al., “Optimizing in the dark: Learning an optimal solution
through a simple interface,” in Proc. AAAI, Nov. 2018.

[59] Q. Xiang et al., “Fine-grained, multi-domain network resource abstrac-
tion as a fundamental primitive to enable high-performance, collab-
orative data sciences,” in Proc. Int. Conf. High Perform. Comput,
Netw., Storage, Anal. (SC), Piscataway, NJ, USA: IEEE Press, 2018,
pp. 5:1–5:13.

[60] K. Gao, Q. Xiang, X. Wang, Y. R. Yang, and J. Bi, “NOVA: Towards on-
demand equivalent network view abstraction for network optimization,”
in Proc. IEEE/ACM 25th Int. Symp Qual. Service (IWQoS), Jun. 2017,
pp. 1–10.

[61] K. Gao et al., “ORSAP: Abstracting routing state on demand,” in Proc.
IEEE 24th Int Conf. Netw. Protocols (ICNP), Nov. 2016, pp. 1–2.

Kai Gao received the B.S. and Ph.D. degrees from
the Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 2018.

He is currently an Assistant Research Scientist
with the College of Cybersecurity, Sichuan Uni-
versity. His research interests include program-
ming languages and distributed runtime systems
for newly emerged networking techniques such as
software-define networking and network function
virtualization.

Qiao Xiang received the bachelor’s degree in
information security and the bachelor’s degree in
economics from Nankai University in 2007, and
the master’s and Ph.D. degrees in computer sci-
ence from Wayne State University in 2012 and
2014, respectively. From 2014 to 2015, he was
a Post-Doctoral Fellow with the School of Com-
puter Science, McGill University. He is currently
an Associate Research Scientist with the Depart-
ment of Computer Science, Yale University. His
research interests include software defined network-

ing, resource discovery and orchestration in collaborative data sciences,
interdomain routing, and wireless cyber-physical systems.

Xin Wang received the B.S. degree in com-
puter science from Tongji University, Shanghai,
China, in 2013, where he is currently pursuing
the Ph.D. degree with the Department of Com-
puter Science and Technology. He is also with
the Key Laboratory of Embedded System and Ser-
vice Computing, Ministry of Education, Beijing,
China. His research interests include computer net-
works, software-defined networks, and distributed
computing.

Yang Richard Yang received the B.E. degree in
computer science and technology from Tsinghua
University in 1993, and the M.S. and Ph.D. degrees
in computer science from the University of Texas
at Austin in 1998 and 2001, respectively. He is
currently a Professor of computer science and elec-
trical engineering with Yale University. His work
has been implemented/adopted in products/systems
of major companies (e.g., AT&T, Alcatel-Lucent,
Cisco, Google, Microsoft, and Youku) and featured
in mainstream media, including Economist, Forbes,

Guardian, Information Week, MIT Technology Review, Science Daily, USA
Today, Washington Post, and Wired, among others. His research was sup-
ported by both the U.S. government funding agencies and leading industrial
corporations. His research interests span areas including computer networks,
mobile computing, wireless networking, and network security. His awards
include the CAREER Award from the National Science Foundation and the
Google Faculty Research Award.

Jun Bi (S’98–A’99–M’00–SM’14) received the
B.S., C.S., and Ph.D. degrees from the Department
of Computer Science, Tsinghua University, Beijing,
China. He is currently a Changjiang Scholar Distin-
guished Professor with Tsinghua University, where
he serves as the Director of the Network Architecture
Research Division and the Deputy Dean of the
Institute for Network Sciences and Cyberspace. He
is also the Director of the Future Network Theory
and Application Research Division, Beijing National
Research Center for Information Science and Tech-

nology. He has published over 200 research papers and 20 Internet RFCs
or drafts. He held 30 innovation patents. He has successfully led tens of
research projects. His current research interests include Internet architecture,
SDN/NFV, and network security. He is a Distinguished Member of the China
Computer Federation.

Authorized licensed use limited to: Yale University. Downloaded on February 23,2020 at 19:51:26 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

