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Abstract—As many applications today migrate to distributed
computing and cloud platforms, their user experience depends
heavily on network performance. Software Defined Network-
ing (SDN) makes it possible to obtain a global view of the
network, introducing the new paradigm of developing adaptive
applications with network views. A naive approach of realizing
the paradigm, such as distributing the whole network view
to applications, is not practical due to scalability and privacy
concerns. Existing approaches providing network abstractions
are limited to special cases, such as bottlenecks exist only at
networks edges, resulting in potentially suboptimal or infeasible
decisions. In this paper, we introduce a novel, on-demand network
abstraction service that provides an abstract network view sup-
porting not only accurate end-to-end QoS metrics, which satisfy
the requirements of many peer-to-peer applications, but also
multi-flow correlation, which is essential for bandwidth-sensitive
applications containing many flows to conduct global network
optimization. We prove that our abstract view is equivalent to
the original network view, in the sense that applications can make
the same optimal decision as with the complete information.
Our evaluations demonstrate that the abstraction guarantees
feasibility and optimality for network optimizations and protects
the network service providers’ privacy. Our evaluations also show
that the service can be implemented efficiently; for example,
for an extreme large network with 30,000 links and abstraction
requests containing 3,000 flows, an abstract network view can be
computed in less than one second.

I. INTRODUCTION

Software Defined Networking (SDN) is a new emerging
technique. It enables a network to collect information from
all the devices and construct a global view. This global view
makes it possible to share with applications essential quality
of service (QoS) metrics such as available bandwidth, loss rate
and routing cost values, which are critical to performance of
network-based services.

While northbound APIs for “apps” (management programs)
to access the global view have been provided by many
SDN controllers (e.g., [1]–[4]), they are not open to non-
administrative parties such as content providers, neighbor
domains and VPN tenants, because of privacy, security and
consistency concerns. Therefore, a new network abstraction
providing global network view for non-administrative parties
is needed.

A naive design is to only return a slice of the network
to these non-administrative parties, or as we refer to as
network consumers. Specifically, the slice can be calculated
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by an SDN controller which receives a query containing the
flows of interest from a consumer, calculates the forwarding
paths for the flows, and returns only links on the paths with
associated attributes. However, this simple approach can have
drawbacks. First, a slice can reveal sensitive information like
network topology, leading to privacy leaks. Second, a slice
may contain redundant information and introduce unnecessary
communication overhead.

Thus, a problem arises on how to provide an abstract
network view which can both eliminate these drawbacks and
still provide high-quality information. It is non-trivial because
of the following challenges:

• Feasibility: A decision made with the abstract view should
also be feasible in the original network. Infeasible solutions
such as flow rate scheduling can lead to congestion and
significantly affect the total throughput and also the user
experience.

• Generality: The abstraction should be general enough to
provide fine-grained information and suffice the demands
of applications with heterogeneous objectives.

• Optimality: A decision made with the abstract view should
be as optimal as with the original network information. A
suboptimal solution will affect the quality of service and
cannot fully utilize the network resources.

• Privacy: The abstraction must be able to protect the privacy
of the network service provider, making it difficult for
malicious consumers to infer the original information.

• Efficiency: The abstraction should not introduce too much
computation/communication overhead, even with moder-
ately large networks and workloads.

Existing abstractions [5]–[14] usually target at a certain type
of scenario and cannot support applications which require fine-
grained QoS metrics. For example, many of these abstractions
do not have the ability to accurately represent bottlenecks
shared by multiple correlated flows in an arbitrary network,
which is critical in emerging use cases such as geo-distributed
data centers [15]–[17] and scientific computing platforms [18].

In this paper, we formally define the problem of providing
high-quality on-demand abstract network views and make
the first step by introducing the equivalent network view
which guarantees feasibility, generality and optimality. The
equivalent network view is based on the observation that
these network information are eventually used by network
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(a) The Sliced Network View. (b) One-big-switch Abstraction. (c) End-to-end Abstraction.

(d) Incorrect Topology Aggregation. (e) Simple Equivalent Aggregation. (f) Advanced Equivalent Transformation.

There are 6 flows: 2 red, 2 blue and 2 brown. The flows are labeled as b1, r1, y1, b2, r2 and y2 from top to bottom.

Fig. 1: Comparison between Different Network View Abstractions.

consumers to conduct network optimizations.

Based on the concept of equivalent network view, we
propose NOVA, the Network Optimization View Abstraction,
which can effectively find such equivalent network views.
Demonstrated by analysis and evaluations, NOVA can also
achieve good privacy preservation and efficiency.

Our main contributions in this paper can be summarized as
follows:

• We systematically investigate the problem of providing
on-demand view abstraction for arbitrary application-layer
network optimization, which is a missing functionality
from current SDN northbound API design. We discuss the
potential benefits for such a new functionality and identify
its challenges.

• We propose NOVA to address the challenges, the Network
Optimization View Abstraction, which is based on the con-
cept of equivalent network view. We prove our equivalent
transformation algorithms can effectively generate equiva-
lent network views which can achieve feasibility, generality
and optimality, while protecting the network privacy.

• We implement a prototype of NOVA and evaluate its
performance using real topologies. Evaluations show that
NOVA guarantees both feasibility and optimality, improves
privacy by reducing information leak, and reduces the
communication overhead by a factor of 1.25 to 5 even for
large networks, for example, real ISP network topologies
with up 10000 nodes and 30000 links, and large workloads
(more than 3000 flow requests).

The rest of the paper is organized as follows. We summarize
the demands for fine-grained network views, existing abstrac-
tions and their limitations in Section II. A formal description
of the abstraction problem and the equivalent network view
are then given in Section III, followed up by the algorithms in
Section IV. We evaluate the prototype and analyze the results
in Section V. Finally, we discuss the related work and give
conclusions in Section VI and Section VII respectively.

II. MOTIVATION

In this section we discuss the motivations that drive our
research. See the network in Figure 1a, assume on the left-
hand side, a web service provider has three services colored in
red, blue and brown respectively while on the right-hand side
there are six clients using different services. Assume the red
service is live streaming, blue is video subscribing and brown
is large file downloading. All three services require bandwidth
so it’s important to know about the bottlenecks in the network
and the content provider sends a request on the bandwidth
correlation of the six flows to the network. Meanwhile, the
content provider does not want the network to know about
how it would manage the services so it does not provide any
further information.

The naive approach returns the slice containing all the links
on the flow paths with the associated bandwidth information
and how the links are shared by the flows, denoted by
Figure 1a in this case. However, this can lead to information
leaks so that malicious network consumers may leverage this
service to infer the network information, which jeopardizes
the privacy of the network provider. Also as the network size
increases, the topology cannot be effectively represented.

The hose model, also known as the one-big-switch abstrac-
tion, returns the network as a single big switch as demonstrated
in Figure 1b. However, the content provider would only know
about the available bandwidth on the ingress/egress “port”. If
the bottleneck is the upper middle link, it is not propagated
to the content provider. Thus, the content provider may incor-
rectly increase the traffic for the blue flows without knowing
that they are correlated with r1, which leads to congestion.
Because of the TCP congestion control mechanism, congestion
would not only affect the r1, jeopardizing the overall objective
to maximize the weighted quality of service, but also the
throughput of the other flows sharing the same link, leading
to an overall performance degradation.

The end-to-end abstraction as demonstrated in Figure 1c is
barely useless in this case. It has the same problem as the one-

2



big-switch abstraction that information about the bottleneck
within the network cannot be accurately provided to the
consumer.

Topology aggregation [13] is a common technique in re-
ducing the topology size. However, it also suffers from the
incapability of providing accurate information about the flow
correlations. What is worse, if not aggregated correctly as in
Figure 1d, it may introduce unnecessary bottlenecks that lead
to suboptimal decisions right in the beginning.

A simple observation is that the lower middle link and the
lower right link are both shared by r2 and y2 only. Thus,
we can aggregate them together as a new virtual link, as
demonstrated in Figure 1e. One may think we can just delete
one of them. However, if the content provider asks about the
end-to-end routing metrics such as hop count at the same time,
deletion would return incorrect values for the two flows.

At the same time, if we already know that the upper middle
link would not be the bottleneck, the network view can be
further reduced as demonstrated in Figure 1f. It is worth
noticing that just like the case with the simple equivalent
aggregation, we cannot just delete it if end-to-end metrics are
also requested.

Thus, the question arises on how we can determine what
kind of links can be reduced and how to reduce them correctly.
In order to answer this question, we introduce the concept
of equivalent network view and propose NOVA, the Network
Optimization View Abstraction, with efficient algorithms to
compute equivalent network view.

III. EQUIVALENT NETWORK VIEW

In this section, we formally define equivalent network view
after introducing its theoretical foundations – the variant rou-
ting metric algebra, and the unified network element. We prove
its properties and demonstrate that it guarantees generality,
feasibility and optimality.

A. The variant routing metric algebra

The routing metric algebra is introduced by Sobrinho to
compute QoS-based routing [19]. The routing metric algebra
is based on path concatenation. The routing metric algebra
consists of the following operations: the weight function w, the
concatenation operator ◦, the “plus” operator ⊕ and a binary
relation �.

The original routing metric algebra system can be repre-
sented as (P, S,w, ◦,⊕,�). P is the set of paths and S is
a closed set of metrics. The weight function w maps a path
from P to a given metric in S. The concatenation operator ◦
is a binary operator on P , which takes two paths and returns
a new one. Operator ⊕ is a binary operator on S and � is a
binary relation on S.

In this paper, we introduce a variant of the routing metric
algebra. First, to better formulate the constraints on flow-
independent metrics, we introduce a new ⊗ : R × S 7→ S
operator to linearize the metric calculation. Second, we relax
the constraint on path concatenation in [19], by extending the
meaning of P from the set of paths to the set of unified network

elements as defined in Section III-B. The new metric algebra
can be described as (P, S,w, ◦,⊕,�,⊗). Concrete examples
of some common routing metrics are demonstrated in Table I.
(S,⊕) is a semigroup so that ⊕ is commutative and as-

sociative. We also require that the ⊗ operator is distributive
over ⊕. It can be easily proved that all the examples listed in
Table I satisfy these requirements.

B. Unified network elements

Traditional graph representations of a network would treat
links and nodes differently because the routing capability
is only provided on nodes (switches/routers/middleboxes).
However, since routing is not a mandatory functionality in our
network view definition, we can generalize the nodes and links
as unified network elements to simplify the representation.

For example, a deep packet inspection (DPI) middlebox
may have a maximum processing speed, which yields the
constraint on the total throughput passing through this DPI
node. From the consumers’ perspective, it has no difference
as a shared bottleneck link. To guarantee that these unified
network elements would not affect the results of routing metric
algebra, we must alter the weight function w as:

w∗(p) =

w(p) if w(p) exists

e otherwise

where e is the identity of w and some concrete examples are
given in Table I.

Unified network elements have several benefits. First, this
unified representation of links/nodes greatly simplifies our
analysis. Second, it provides a high-level abstraction which
focuses on the routing metric semantics and allows consumers
to ignore how the metrics are computed/constrained.

C. Network view abstraction

We identify two kinds of routing metrics that are essential
for network optimization:
• Flow-independent metrics represent those metrics whose

value is independent of the flow correlations, in the sense
that the existence of a flow would not affect the value of
another flow’s flow-independent metric sharing the same
network element. Common flow-independent metrics used
in QoS routing [20] include hop count, local link preference,
delay, jitters and loss rate1.

• The flow-correlated metrics represents the network re-
sources that are shared among flows. Bandwidth is the most
common and also the most important flow-correlated metric.
Other shared resources such as flow entries or middlebox-
related metrics may also exist in certain scenarios.
Flow-independent metrics are formulated as equations ac-

cording to the routing metric algebra introduced in Sec-
tion III-A. For example, the hop count between two end hosts
is equal to the sum of the all hop count on each link in the

1Delay, jitters and loss rate are sensitive to traffic volumes so their real
time values are not flow independent. However, they are considered flow
independent when measured statistically.
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TABLE I: The Variant Routing Metric Algebra.

S Weight function (w) w(p1) w(p2) w(p1 ◦ p2) = w(p1)⊕ w(p2) N ⊗ w(p1) Identity (e) Zero (0)
N+ Hopcount h1 h2 h1 + h2 N · h1 0 +∞
R+ Bandwidth b1 b2 min(b1, b2) b1 +∞ 0
R+ Delay d1 d2 d1 + d2 N · d1 0 +∞
[0, 1] Loss rate r1 r2 1− (1− r1)(1− r2) 1− (1− r1)

N 0 1

TABLE II: Symbols for Network View Abstraction.

Symbol Meaning
V Network view represented by 4-tuple

Vi(ui) The i-the component (and its key matrix) of V
rij Indicator of whether element j appears in flow i’s path

pkj (p̂
k
i ) k-th flow-independent metric of element j (flow i)

ak
ji Proportion of fi’s correlated metric k on element j

qkj (q̂
k
i ) k-th flow-correlated metric of element j (flow i)
E Objective function of the consumer
A Abstraction function
V ′ Abstract view computed by A(V )

path. Let pj represent the metrics on element j, p̂i represent
the metrics for flow i, and rij(rij ∈ {0, 1}) represent whether
element j appears in the path of flow i, we have:

p̂i =

⊕
j

rij ⊗ p1j , . . . ,
⊕
j

rij ⊗ psj

 = Ri × P

If the k-th flow-correlated metric (resource) flow i consumes
on element j is proportional to the total amount of resources
consumed by this flow and the proportion is independent of
flow correlations, the flow-correlated metrics are formulated
as linear constraints. The sum of the resource consumption
of all the flows on a single element must not exceed the
available amount. Let qj represent the available resources on
element j, q̂i represent the resource consumed by flow i, and
akji(≥ 0) represent the proportion of the k-the kind of resource
consumed by flow i on element j, we have:∑

i

akjiq̂
k
i ≤ qkj ⇔ Akq̂k ≤ qk

Thus, the network view can be formulated as a tuple with
four elements: V = (R,P ,A,Q). Based on this network view
model, an abstraction can be defined as below:

Definition 1 (Network View Abstraction). The network view
abstraction is a transform function A which takes the original
network view V and returns the abstract view V ′, i.e.,

V ′(R′, P ′,A′,Q′) = A (V (R,P,A,Q))

D. Equivalent network view

A key insight of the network view abstraction is that the
returned information is usually the input parameters of a
specific algorithm, whose result can help applications make
decisions. If the applications can make the same optimized

decision with the abstract network view, we can say the
abstract network view is equivalent.

Consider a consumer of the network view whose opti-
mization problem consists of a set of flows {f1, . . . , fn}. For
flow i, the consumer queries its flow-independent metrics p̂i =
(p̂1i , . . . , p̂

s
i ), and its flow-correlated metrics q̂i = (q1i , . . . , q

t
i).

The optimization problem can be formulated as

min E ({p̂i} , {q̂i})

s.t.
P̂ = R× P
Akq̂k ≤ qk

R ≥ 0,Ak ≥ 0, qk ≥ 0, q̂k ≥ 0

We use the symbols in Table II and define the equivalent
network view as the following:

Definition 2 (Network View Equivalence). Two network
views V1 and V2, V1 is equivalent to V2 if and only if
for any consumer with flows {fi}, its objective function
min E ({p̂i}, {q̂i}) achieves the same optimal objective.

We use the symbol “∼” to represent the network view
equivalence. It can be easily proved that the network view
equivalence is an equivalence relation. We also propose the
criterion in Theorem 1 to simplify the verification.

Theorem 1 (Network View Equivalence Criterion). Two net-
work views V1 and V2, V1 is equivalent to V2 if and only if
for any consumer with flows {fi} and metrics {p̂i}, {q̂i}:

R1 × P1 = R2 × P2 (1a)

F k
1 =

{
x | Ak

1x ≤ qk
1

}
=
{
x | Ak

2x ≤ qk
2

}
= F k

2 (1b)

Proof. Sketch: For two network views V1 and V2, we use
V1 ∼∗ V2 and V1 ∼ V2 to represent that V1 and V2 are
equivalent by the criterion and are equivalent by definition
respectively. It can be easily proved that if V1 ∼∗ V2, V1 ∼ V2.
For the other direction, we prove it by contradiction.

We first assume that there exists V1 ∼ V2 but V1 �∗ V2,
i.e., either Equation 1a or Equation 1b does not hold.

Assume Equation 1a does not hold. For any P̂1 = R1 ×
P1 6= R2 × P2 = P̂2, we find one entry that is not equal
in P̂1 and P̂2, say p̂1

k
i 6= p̂2

k
i and construct an objective

function which use the p̂ki as the objective value. Thus, for
the objective function the two network views yield different
optimal objectives and they are not equivalent by definition,
which contradicts with our assumption.

Assume Equation 1b does not hold, ∃x0 ∈ (F1 \ F2) ∪
(F2 \ F1). Without loss of generality, let x0 ∈ F1 \F2. Since
x0 /∈ F2, there exist j, k such that A2

k
jx0 = y0 > qkj . Now
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we construct a linear objective function in the standard form
min−A2

k
jx, and assume the optimal objective is y1 and y2

respectively. We have y1 ≥ y0 > qkj = y2 which means the
objective function yields different optimal objective values for
the two network views. Again, we get a contradiction.

Thus, we can conclude that if V1 ∼ V2, V1 ∼∗ V2 and the
criterion is both sufficient and necessary.

We have proved that the network views satisfying this cri-
terion also satisfy Definition 2 and can provide the equivalent
network view for consumers with arbitrary objective functions
and arbitrary fine-grained routing metrics as long as they fit
in the variant routing metric algebra.

IV. NETWORK OPTIMIZATION VIEW ABSTRACTION

In this section, we introduce NOVA, the Network Opti-
mization View Abstraction which conducts equivalent transfor-
mations to obtain the equivalent network view. NOVA consists
of two algorithms, namely the equivalent element aggregation
and the equivalent element decomposition. We prove both
algorithms guarantee the equivalence condition, and analyze
how they can improve efficiency and privacy as well.

To help simplify the analysis, we assume the request con-
tains n flows with s flow-independent metrics and t flow-
correlated metrics, while the corresponding original network
view contains m elements.

A. Equivalent element aggregation

In this section, we introduce the equivalence aggregation.
The intuition is that, as demonstrated with Figure 1e, the
elements shared by the same set of flows and with the same
coefficients in the network constraints can be combined into
a single element. The algorithm is given in Algorithm 1 and
we analyze its efficiency and prove its correctness.

Algorithm 1: NOVA Equivalent Element Aggregation
Input: V (R,P ,A,S)
Output: V ′(R′,P ′,A′,S′)

1 Function EQUIVAGGREGATION(V)
2 V ←

{
Vi | Vi ←

(
RT

i,Pi, {Ak
i }, {Qk

i }
)
, 1 ≤ i ≤ m

}
3 G ← GROUPBY(V, Vi ⇒

(
ki ← (RT

i, {Ak
i }), Vi

)
)

4 for Gi ∈ G do
5 V ′i ← AGGREGATE(ki, {Vai

j
∈ Gi})

6 V ′ ←[R′T
1 · · ·R′T

m′
]
,

 p′
1

...
p′

m′

 ,


A′k

1

...
Ak

m′

 ,


q′k

1

...
q′k

m′




return V ′

7 Function AGGREGATE(ki, {Vai
j
})

8 (R′T
i, {A′k

i })← ki
9 p′

i ← [
⊕

p1
ai
j
, . . . ,

⊕
ps
ai
j
]

10 q′
i ←

{
q′ki | q′ki ← min{qk

ai
1
, . . . , qk

ai
t
},∀k

}
11 return

(
R′T

i,p
′
i, {A′k

i }, {q′k
i }
)

The network view is represented as row vectors (com-
ponents), as demonstrated in Line 2. Line 3 groups the i-
th component Vi(R

T
i ,Pi, {Ak

i }, {Qk
i }) using a unified row

vector ui =
[
RT

i
T
,A1

i , . . . ,A
t
i

]
1×(n+nt)

as the key. Line 5

computes the aggregation of the components in each group.
Finally Line 6 constructs the new network view by merging all
the aggregated components. For each component Vi, the time
complexity for the grouping and the aggregation is O(n(s+t))
and O(n(s + t)) respectively while the MERGE process is
totally logical, which yields a total time of O(mn(s+ t)).

Now we prove the element aggregation algorithm is correct,
in the sense that it maintains the equivalence condition.

Theorem 2. V ′ ← EQUIVAGGREGATION(V ), V ′ ∼ V .

Proof. Sketch: Assume ai represents the index of the compo-
nents in Gi, and let bi ← min aij and cki ← argminj∈ai

qkj .
First we check Equation 1a is met. Let M = R × P , we

have

mij =
⊕
k

rik ⊗ pjk =
⊕

1≤k≤m′

{⊕
u∈ak

riu ⊗ pju

}

=
⊕

1≤k≤m′

ribk ⊗

{⊕
u∈ak

pju

}
=

⊕
1≤k≤m

ribk ⊗ p′
j
u = m′ij

The key steps are based on that ⊕ is transitive and commuta-
tive, ⊗ is distributive over ⊕, and ∀u ∈ bk, riu = riak

.
Now we check Equation 1b. For any k, we have

F k =
{
x | Ak

ix ≤ qk
i,∀i

}
F ′k =

{
x | A′k

ix ≤ q′k
i,∀i

}
=
{
x | Ak

cix ≤ qk
ci ,∀i

}
Since the constraints of F ′k is a subset of F k, F k ⊆ F ′k. If
F ′k 6= F k, ∃x0 ∈ F ′k \F k, meaning x0 must at least violates
one constraint in F k, say Ak

di
where di ∈ ai. Thus, we have

Ak
di
x0 > qkdi

≥ min
j∈ai

qkj = qkci

which means x0 also violates one constraint in F ′k and leads
to contradiction with our assumption. So we have F k = F ′k.

By Theorem 1, V ′ ∼ V .

B. Equivalent element decomposition
In this section, we introduce the motivations for equivalent

element decomposition which can substantially improve the
performance of equivalent element aggregation.

Algorithm 1 guarantees the equivalence condition which is
important to prove the correctness of NOVA, however, the
condition to aggregate components is not easy to be satisfied
without further processing. Thus, in practice we need to
conduct another equivalent transformation, namely equivalent
element decomposition. The intuition of this algorithm can be
demonstrated using the simple example below:

a : routingcost = 1, bandwidth = 100Mbps
b : routingcost = 2, bandwidth = 100Mbps
c : routingcost = 3, bandwidth = 200Mbps

RT
a = Aa =

[
1 0
]T

,RT
b = Ab =

[
0 1
]T

,RT
c = Ac =

[
1 1
]T
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According to grouping condition, there will be three dif-
ferent groups. But we can make the observation that since
the constraint for c: bw1 + bw2 ≤ 200 is redundant, we can
decompose c as two unified network elements c1 and c2 where

c1 : routingcost = 3, bandwidth = 200Mbps
c2 : routingcost = 3, bandwidth = 200Mbps
RT

c1 = Ac1 =
[
1 0
]T

,RT
c2 = Ac2 =

[
0 1
]T

After c is decomposed, we can invoke EQUIVAGGREGATION
(Algorithm 1) and c1 and c2 can be aggregated with a
and b respectively. We introduce the definition of constraint
redundancy by Telgen [21] as Definition 3 and further prove
that the decomposition guarantees equivalence.

Definition 3 (Redundant linear constraint – Telgen [21]). For
a linear system whose feasible region F = {x | Ax ≤ b}, the
k-the constraint Akx ≤ bk is redundant if and only if the
feasible region Fk = {x | Aix ≤ bi, i 6= k} is equal to F , i.e.
Fk = F .

Theorem 3. For Vi(R
T
i ,Pi, {Ak

i }, {Qk
i }), we say Vi is

redundant if and only if Ak
i x ≤ qk

i is redundant for all k.
If and only if Vi is redundant, we can construct an equivalent
network view V ′ = V \Vi∪{V j

i } where Vi is decomposed as
V

(j)
i (RT

i
j
,P

(j)
i , ∅, ∅) with RT

i =
∑

j R
T
i
(j) and P

(j)
i = Pi.

Proof. Sketch: We still consider the criteria Equation 1a and
Equation 1b and use the same symbols in Theorem 2.

First we can prove criterion Equation 1a holds whether Vi

is redundant or not.

muv =
⊕
k

ruk ⊗ pvk =
⊕
k 6=i

ruk ⊗ pvk + rui ⊗ pvk

=
⊕
k 6=i

ruk ⊗ pvk +

∑
j

r
(j)
ui

⊗ pvk

=
⊕
k 6=i

ruk ⊗ pvk +
⊕

r
(j)
ui ⊗ pvk

(j) = m′uv

For Equation 1b, first we consider the case when Vi is
redundant but V � V ′. Vi is redundant so that ∀k, Ak

i x ≤ qk
i

is redundant. According to Definition 3, we have the feasible
regions F k = F k

i = F ′k for all k. Since we have already
proved that Equation 1a holds, according to Theorem 1,
V ∼ V ′ which leads contradiction.

If Vi is not redundant but V ∼ V ′, we can similarly
construct a contradiction between the definition of redundancy
and the equivalency criterion.

Thus, we have proved that Vi can be equivalently decom-
posed if and only if Vi is redundant.

The efficiency and privacy of equivalent decomposition
depend on 1) how to identify redundant components, and 2)
how to find the basis. In this paper, we use a heuristic approach
which aims to simplify the selection of basis, as introduced in
Algorithm 2.

Line 2 identifies the set of decomposable components Vd

according to Theorem 3, i.e. ∀vi ∈ Vd, vi is redundant. The

algorithm then decomposes these redundant components to a
unit basis {V (i)

j | rji 6= 0} in Line 4-11. According to Theo-
rem 3, V ′ after each iteration is equivalent to the original net-
work view V . Finally we invoke EQUIVAGGREGATION(V ′)
to aggregate the V i

j with the same RT
i , which is also proved

to maintain the equivalence condition as in Theorem 2. Thus,
Algorithm 2 returns the equivalent network view.

For each iteration, the decomposition takes O(n) time to
check the condition in Line 8 and O(ns) to construct the
corresponding basis. The algorithm would at most have m
iterations so the total execution time for decomposition is
O(mns) and the total execution time with EQUIVAGGREGA-
TION is O(mn(s+ t)).

Different algorithms exist to find the decomposable com-
ponents, based on Theorem 3. For example, one can find
all elements with non-redundant linear constraints, which is
a well-studied problem, and get the decomposable set by
calculating its inverse.

C. Privacy preservation

The equivalent aggregation and equivalent decomposition
are equal to matrix factorization. While the consumer can
only infer the network elements which cannot be decomposed
without jeopardizing feasibility or optimality, it is impossible
to infer the complete original network state without knowing
the exact value of the transform matrix. Thus, Algorithm 2 can
improve the privacy preservation and reduce information leak.
It is noticeable that compared with some other optimization
frameworks, NOVA does not require consumers to specify
private information, e.g. private constraints and objective func-
tions, which also protects the privacy of the consumers.

V. EVALUATION

In this section, we evaluate NOVA to demonstrate its effi-
ciency and efficacy in providing accurate on-demand network
views in comparison to some other abstraction models.

Algorithm 2: NOVA Equivalent Element Decomposition
Input: V (R,P ,A,Q), F
Output: V ′(R′,P ′,A′,Q′)

1 Function EQUIVDECOMPOSITION(V, F )
2 Vd ← FINDEQUIVDECOMPOSABLE(V )
3 V ′ ← V
4 foreach Vj ∈ Vd do
5 S ← ∅
6 foreach fi ∈ F do

7 RT
i ←

0, . . . , 0︸ ︷︷ ︸
i−1

, rji, 0, . . .


8 if rij = 1 then
9 V

(i)
j ←

(
RT

i ,Pj i, ∅, ∅
)

10 S ← S ∪
{
V

(i)
j

}
11 V ′ ← (V ′ \ Vj) ∪ {S}
12 V ′ ← EQUIVAGGREGATION(V ′)
13 return V ′
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A. Methodology

Performance metrics. We evaluate the performance of NOVA
using the following metrics:
• Optimality and feasibility: To demonstrate optimality and

feasibility, we generate random linear objective functions
maximizing the weighted throughput [22] to demonstrate
its generality and compare the results.

• Communication overhead reduction: We measure the com-
munication overhead by the number of (flow, element) pairs
contained in an network view so that smaller numbers
represents better reduction.

• Privacy preservation: We measure the privacy preservation
by the ratio of network elements in the original network
view that still appear in the abstract network view. Smaller
numbers represents less information leak and better privacy.
As being said in Section IV-C, the non-redundant network
elements cannot be reduced, we specifically evaluate the
preservation of redundant elements.

• Computation overhead: We measure the computation over-
head by the execution time of the abstraction process so
that smaller numbers represents better performance.

Topology. Three topologies are used in this evaluation: Kdl
(752 nodes, 1790 links), AS4755 (531 nodes, 1428 links) and
AS2914 (10820 nodes, 32844 links) from two data sets: the
topology zoo [23] and rocketfuel [24]. If the topology already
has bandwidth information, we use it directly. Otherwise,
we generate stepped values for links from edge to core.
We allocate the routingcost randomly following the standard
distribution around the reciprocal of bandwidth multiplied by
a given constant to avoid precision issues.

Redundancy check algorithms. We use two redundancy
check algorithms in our evaluation. The first, denoted as
strict redundancy check, follows Definition 3 and can find the
minimal set of non-redundant linear constraints. The second,
denoted as relaxed, identifies redundancy by randomly select-
ing basis and comparing the bound with the sum of the basis
and may lead to false negative in identifying redundancies.

Flow requests. We use two traffic patterns: few-to-many (ftm)
and many-to-many (mtm). The first represents the server-
client traffic pattern while the second represents the peer-to-
peer traffic pattern. For each pattern, we have 9 groups with
different number of flows and for each group we randomly
generate 3 flow requests for each topology. The flow requests
are computed with bandwidth-only (bw), routingcost-only (rc)
and hybrid (two variants hybrid-1 and hybrid-2) respectively.
For bandwidth-only requests, we use the strict redundancy
check. The other requests uses Algorithm 2 with different
redundancy check algorithms: no check for routingcost-only,
strict redundancy check for hybrid-1 and relaxed redundancy
check for hybrid-2 to demonstrate the effect of how redun-
dancy check algorithms on the performance of NOVA.

Environment and data collection. The prototype system is
built with Python and uses the PuLP framework and COIN
Branch and Cut (CBC) solver to solve linear programming.

(a) Kdl, ftm, normalized. (b) Kdl, mtm, normalized. (c) 2914, mtm, normalized.

Fig. 2: Normalized Maximum Weighted Throughput.

The evaluations are conducted on a laptop with Linux kernel
4.9.6, 4 quad-core Intel(R) Core(TM) i7-4700MQ @2.40GHz
CPU and 16 GB memory. For each topology, we generate
three different routing cost distributions and three different
flow requests of the same flow size. The data are collected
from the same execution.

B. Optimality and feasibility

The normalized results for using different views to solve
the same random linear programming problems are compared
with the original network view (raw) and the one-big-switch
(obs). Since queries with only routing cost would not generate
any linear constraints, it is omitted in this evaluation.

As demonstrated in Figure 2, we can see that NOVA
always achieves the same optimal solution as with the original
network view while the one-big-switch abstraction results in
infeasible solutions. The reason is that one-big-switch abstrac-
tion does not identify the bottleneck links inside the network.

C. Privacy preservation

To demonstrate how much information consumers can learn
about the original network, we use the number of preserved
links to measure privacy preservation as specified in Sec-
tion V-A. As demonstrated in Figure 3, we can see that despite
the non-redundant links which cannot be hidden without jeop-
ardizing equivalence, NOVA with strict redundancy checks can
hide almost all the redundant links.

We have identified three effective factors on the privacy
preservation of NOVA: 1) the redundancy check criterion, 2)
flow patterns, and 3) the number of flows.

As demonstrated in Figure 3, we can see that the effect of
privacy preservation is mostly determined by the redundancy
check algorithm. In both traffic patterns, hybrid-1 using strict
redundancy check preserves very few links in the abstract
network view (less than 10% in all three topologies) that it
almost overlaps with the theoretical optimal ratio denoted by
the bandwidth-only, while hybrid-2 generally preserves more
redundant links. The reason is that the relaxed redundancy
check used in hybrid-2 has false negative results and those
redundant links are not decomposed.

Traffic patterns have slightly less impact on the privacy
preservation but we can still observe that for traffic with the
few-to-many pattern, more links are preserved by hybrid-2.
This is because in the few-to-many traffic pattern, the flows
sharing a link on the “many” side would diverge to different
paths and have no further correlation. Thus, even the link is

7



(a) few-to-many, normalized. (b) many-to-many, normalized.

(c) Kdl, many-to-many, absolute. (d) Kdl, many-to-many, absolute.

Fig. 3: Preserved links in abstract network view.

unlikely to become the bottleneck, it still cannot be identified
by simple redundancy check algorithms.

The number of flows would affect the privacy preservation,
as demonstrated in Figure 3c and Figure 3d. It is intuitive since
more flows can generate more combinations of correlation,
and reveal more information about the network. However,
even with relatively large flow requests (more than 2500
flows), NOVA can protect as much as 60% of the original
sliced network view in both traffic patterns using the strict
redundancy check. It is also worth pointing out that when the
request only contains flow-independent metrics, NOVA will
fall back to the end-to-end abstraction.

D. Communication overhead reduction.

As analyzed in Section IV-A and Section IV-B, while NOVA
guarantees feasibility, optimality and protects privacy, it can
also reduce the communication overhead. The communication
overhead is measured by the number of (flow, element) pairs in
the network view, and the results are normalized by the value
of the original network view. As demonstrated in Figure 4,
we can see that depending on the effective factors, NOVA can
shrink the communication overhead by a factor of 1.25 to 5.

We can see that the communication overhead reduction is
affected by the same effective factors – the redundancy check
algorithm, the traffic pattern and the number of flows – in
a similar way as privacy preservation. The reason is that the
communication overhead is mostly reduced by aggregating and
decomposing redundant links. As the ratio of non-redundant
links grows, the reduction is less obvious.

We can see that the theoretical lower bound (result of
bandwidth-only) of communication overhead reduction is
larger than that of privacy preservation. The reason is that
most bottlenecks are usually shared by more flows, so the

(a) 2914, few-to-many, normalized. (b) Kdl, few-to-many, normalized.

(c) 2914, many-to-many, normalized. (d) Kdl, many-to-many, normalized.

Fig. 4: Communication overhead reduction.

average number of flows on the preserved links is larger than
the average in the whole slice. The gap between hybrid-1 and
bandwidth-only in communication overhead reduction is larger
than that in privacy preservation, because flows are sent to
multiple receivers from a host so links containing a single
flow will not affect the privacy but still has an impact on the
communication overhead.

E. Computation overhead

As we can see from Figure 5, the most time-consuming part
of our evaluation is to find the minimal non-redundant linear
constraints, which is a well-studied problem in optimization
theory and network providers can reduce this cost significantly
by introducing more efficient algorithms. Even our naive so-
lution can return an equivalent network view within 5 seconds
for up to 400 flows in a large network (AS2914), which is
often fast enough for many network optimization problems.

Meanwhile, the equivalent decomposition (represented as
hybrid-1 in Figure 5) is very efficient, which takes less than
250ms even for the largest test case with 3200 flows and a
network with more than 10000 nodes (AS2914). The relaxed
redundancy check algorithm takes approximately 1 second,
which makes it useful in certain scenarios.

F. Summary

In this section, we evaluate the performance of NOVA
thoroughly. We demonstrate that one-big-switch can lead to
infeasible solutions while NOVA guarantees both feasibility
and optimality, which enables consumers to fully utilize the
network resources. Privacy is achieved by decomposing the
redundant network elements. With strict redundancy check
algorithms, we can reduce 60% to nearly 100% of unnecessary
information leaks. Depending on the number of flow requests
and traffic pattern, NOVA can improve the communication
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(a) 2914, few-to-many. (b) 2914, many-to-many.

Fig. 5: Computation overhead.

time by a factor of 1.25 to 5. The computation overhead is
within a reasonable range for typical uses where elephant
flows usually takes tens to hundreds of seconds to finish. Thus,
NOVA is useful for network providers to achieve collaborative
optimization with non-administrative parties to build QoS-
aware applications.

VI. RELATED WORK

A. Demands for network views

The demands for being network-aware are quite common.
For services built on top of the Internet, user experience
depends heavily on the quality of networking service [25].
Previous studies [26] have already shown that obtaining end-
to-end metrics can significantly improve the user experience
of peer-to-peer services and content delivery networks.

Meanwhile, several studies (e.g., [27]–[29]) have also ad-
dressed the need to conduct flow scheduling over the network,
suggesting the importance of obtaining the correlations be-
tween different data transfers. Such demands are usually asso-
ciated with traffic with large volumes, such as inter-data center
communication, e.g, Google’s globally-deployed B4 [15] sys-
tem and global data intensive science networks [18]. Feeding
these applications with more accurate network information
allows them to make more intelligent operating decisions.

Another example where being aware of the network per-
formance can be beneficial is fine-grained routing. Latest
approaches such as the Software Defined Internet Exchange
point (SDX) [30] have enabled Autonomous Systems to set
up fine-grained forwarding rules. With the ability to query the
expected network performance, an AS would be able to make
routing decisions based not only on the cost, but also on the
real-time quality of service. Meanwhile, such information can
also be provided to QoS-based routing protocols [19], [20].

SOL [31] and CoFlow [27] are SDN-based network opti-
mization frameworks which provide abstractions to simplify
the modeling of network optimization problems. However, it
would require the optimizer to provide all the information to
the network, which jeopardizes the privacy. General collabo-
rative optimization [32]–[34] typically protects the privacy by
multiplying a monomial matrix. NOVA enables collaborative
optimization by providing the network views to the optimizer,
while conducting equivalent transformations to reduce the
communication overhead as well as protect the privacy.

B. Providing network view

The most straight-forward way of providing network views
is to use its graph representation. Several routing protocols
[8]–[11] including OSPF and IS-IS conceptually provide such
an abstraction of the network and it is also adopted by the
I2RS (Interface to Routing System) IETF Working group [35].
Modern SDN controllers [1]–[4] also provide the global view
using the annotated graph model.

The hose model [6] is first introduced for VPN provisioning
in 1999. Each endpoint is associated with a hose in this model
and the details of the actual VPN tunnels are hidden. It is
sometimes referred to as the one-big-switch in the context of
SDN because the network is abstracted as a single logical
switch in this model. Because of its simplicity, the hose model
is widely used, for example, by many network programming
languages [36], [37]. SDX also uses this model to encapsulate
the underlying network topology. Data center fabrics are
highly customized for scalability [7] and can be modeled as a
non-blocking switch where congestion only occurs on access
links [14], thus, the one-big-switch abstraction is also widely
used for data center flow scheduling and tenant resource
provisioning [27]–[29].

The pipe model is mostly used by web-based applications
or measurement frameworks, which have no control over the
network. The pipe model consists of several flows (host pairs)
and provides a single pipe for each flow (pair) with the associ-
ated metrics. PerfSONAR [38], Meridian[39] and ClosestNode
[40] are some concrete examples which provide such end-to-
end network views based on measurement, while P4P [26] and
the ALTO (Application-Layer Traffic Optimization) protocol
[12] are leveraging the network providers’ information.

NOVA is similar to ALTO in the sense that in both cases
information is provided by the network to non-administrative
consumers, which is likely to achieve better accuracy. Mean-
while, we overcome the limitations of ALTO by adopting
the equivalence abstraction to provide fine-grained metrics,
in particular the flow correlations, which makes it possible to
suffice the demands from a broader range of applications. This
underlying philosophy also distinguishes NOVA from other
(especially QoS related) routing protocols and network views
based on topological aggregation [10].

VII. CONCLUSION

In this paper, we systematically study the problem of
providing an accurate on-demand network view which is
general enough to suffice the requirement of heterogeneous
optimization problems. Our abstraction is based on the prin-
ciple of equivalence which guarantees generality, feasibility
and optimality. We design the NOVA framework to construct
equivalent network views with enhanced privacy preservation
and evaluate its performance compared with some well-known
network view abstractions. While we have established the the-
oretical foundations and guidelines of constructing on-demand
network optimization view abstractions, essential functionali-
ties such as communication protocols, easy-to-use API design
and commercial models are still not fully discovered. We plan
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to explore these missing functionalities in the future, along
with the implementation and deployment in real networks.
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