
Fine-Grained, Multi-Domain Network Resource
Abstraction as a Fundamental Primitive to Enable
High-Performance, Collaborative Data Sciences

Qiao Xiang[‡, J. Jensen Zhang[, X. Tony Wang[, Y. Jace Liu[,
Chin Guok†, Franck Le�, John MacAuley†, Harvey Newman∗, Y. Richard Yang[‡,

[Tongji University, ‡Yale University, †Lawrence Berkeley National Laboratory,
�IBM T.J. Watson Research Center, ∗California Institute of Technology,

{qiao.xiang, yry}@cs.yale.edu, {jingxuan.zhang, 13xinwang}@tongji.edu.cn,
yang.jace.liu@linux.com, {chin, macauley}@es.net, fle@us.ibm.com, newman@hep.caltech.edu

Abstract—Multi-domain network resource reservation systems
are being deployed, driven by the demand and substantial
benefits of providing predictable network resources. However,
a major lack of existing systems is their coarse granularity,
due to the participating networks’ concern of revealing sensitive
information, which can result in substantial inefficiencies. This
paper presents Mercator, a novel multi-domain network resource
discovery system to provide fine-grained, global network re-
source information, for collaborative sciences. The foundation of
Mercator is a resource abstraction through algebraic-expression
enumeration (i.e., linear inequalities/equations), as a compact rep-
resentation of the available bandwidth in multi-domain networks.
In addition, we develop an obfuscating protocol, to address the
privacy concerns by ensuring that no participant can associate the
algebraic expressions with the corresponding member networks.
We also introduce a super-set projection technique to increase
Mercator’s scalability. Finally, we implement Mercator and
demonstrate both its efficiency and efficacy through extensive
experiments using real topologies and traces.

Index Terms—Multi-domain networks, resource discovery, pri-
vacy preserving

I. INTRODUCTION

Many of today’s premier science experiments, such as
the Large Hadron Collider (LHC) [1], the Square Kilo-
metre Array (SKA) [2], and the Linac Coherent Light
Source (LCLS) [3], rely on finely-tuned workflows that co-
ordinate geographically distributed resources (e.g., instrument,
compute, storage) to enable scientific discoveries. An example
of this is the movement of LHC data from Tier 0 (i.e., the data
center at European Organization for Nuclear Research, known
as CERN) to Tier 1 (i.e., national laboratories) storage sites
around the world. This requires deadline scheduling to keep up
with the amount of information that is continually generated
by instruments when they are online. Another example is
the “superfacility” model being developed by LCLS to allow
streaming of data from instruments, across the Wide-Area
Network (WAN), directly into supercomputers’ burst buffers
for near real-time analysis. The key to supporting these dis-
tributed resource workflows is the ability to reserve and guar-
antee bandwidth across multiple network domains to facilitate
predictable end-to-end network connectivity. As such, several

The corresponding authors are Qiao Xiang and Y. Richard Yang.

D2

D3D1
S

40Gbps
40Gbps

10Gbps
10Gbps100Gbps

10Gbps
100Gbps

10Gbps 10Gbps

100Gbps

Member Network𝕄" Member Network𝕄# Member Network𝕄$

Fig. 1: A motivating example where a user wants to reserve bandwidth
for three source-destination pairs: (S,D1), (S,D2) and (S,D3), across 3
member networks M1, M2 and M3.

Research and Education (R&E) networks have deployed inter-
domain circuit reservation systems. For example, the Energy
Sciences Network (ESnet), a network supporting the LHC
experiments, has deployed an On-Demand Secure Circuits and
Advance Reservation System called OSCARS [4].

However, due to networks’ concern of revealing sensitive
information, existing systems do not provide a network inter-
face for users to access network resource information (e.g.,
network capabilities). Instead, they only allow users to submit
requests for reserving a specific amount of bandwidth, and
return either success or failure [4]–[10]. This approach, which
we call “probe requests” in the rest of this paper, often results
in poor performance and fairness. Specifically, while solutions
for reserving bandwidth within a single member network,
can be very efficient, solutions for discovering and reserving
bandwidth for correlated and concurrent flows across multiple
member networks face unique challenges. In particular, solu-
tions to reserving bandwidth within a single member network
are often provided with the member network’s topology, and
links’ availability. In contrast, because this information is
typically considered sensitive, member networks do not reveal
internal network details to external parties. As a result, existing
multi-domain reservation systems treat each member network
as a black box, probe their available resource by submitting
varied circuit reservation requests, and receive boolean re-
sponses. In other words, current solutions perform a depth-first
search on all member networks, and rely on a trial and error
approach: to reserve bandwidth, repeated, and varied attempts
may have to be submitted until success.

To illustrate the limitations of existing systems, we consider
a collaboration network composed of three member networks
running OSCARS [4], as shown in Fig. 1. A user may
submit a request to reserve bandwidth for three circuits, from
source host S to destination hosts D1, D2 and D3. Given the

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c©2018 IEEE

capabilities of the source host (e.g., the source host may have
a 100 Gbps network card), and to ensure fairness across the
circuits, the user may request 33.33 Gbps for each circuit.
Upon receiving this request, OSCARS processes the circuits
sequentially, for example, in the order of (S,D1), (S,D2) and
(S,D3). For each circuit, it uses a depth-first search approach
to probe if each member network can provide the requested
bandwidth. In this example, there is no path with 33.33 Gbps
of bandwidth from S to D1, and hence OSCARS notifies the
user that this request fails.

The user can then adjust the requested bandwidth. However,
with the limited feedback in OSCARS, the user does not
know the amount of available bandwidth from S to D1.
Consequently, the user may use a cut-to-half-until-reserved
search strategy. As a result, after 12 attempts, the networks
allocate 8.33 Gbps (33.33 → 16.67 → 8.33) for (S,D1), 8.33
Gbps (33.33 → 16.67 → 8.33) for (S,D2) and 1.04 Gbps
(33.33→ 16.67→ 8.33→ 4.17→ 2.08→ 1.04) for (S,D3).
In addition to requiring a large number of search attempts,
the approach may obtain a bandwidth allocation that is far
from optimal. For example, given the links’ capacities and
availability, a fair optimal bandwidth allocation is actually
5 Gbps for each circuit. Without a network interface to
provide network resource information, designing an algorithm
using existing systems to identify this solution can lead to
substantially more complexity and churns.

In addition to multi-domain circuit reservation systems,
multiple multi-domain resource discovery systems have been
developed and deployed (e.g., [11]–[17]). However, these
systems focus on the discovery of endpoint resources (i.e.,
computation and storage resources) and their availability for
different services. They do not provide a network interface for
applications to discover the network resource availability and
sharing properties [18]–[20].

In this paper, we present Mercator, a novel multi-domain
resource discovery system designed to optimize large, multi-
domain transfers, and address the limitations of current reser-
vation systems through three main components. The first and
core component of Mercator is a resource abstraction through
algebraic-expression enumeration (i.e., linear inequalities and
equations), which provides a compact, unifying representation
of multi-domain network available bandwidth. For example,
considering the same example of Fig. 1, the resource ab-
straction captures the constraints from all networks using the
set of linear inequalities depicted in Fig. 2. Specifically, the
variables x1, x2, x3 represent the available bandwidth that can
be reserved for (S,D1), (S,D2) and (S,D3), respectively.
Each linear inequality represents a constraint on the reserv-
able bandwidths over different shared resources by the three
circuits. For example, the inequality x1 + x2 + x3 ≤ 100
indicates that all three circuits share a common resource and
that the sum of their bandwidths can not exceed 100 Gbps.
With this set of linear inequalities, the user does not need to
repeatedly probe the domains, but can immediately derive the
bandwidth allocation to satisfy its own objective (e.g., same

𝑥" + 𝑥$ + 𝑥% ≤ 100,
𝑥" + 𝑥$ + 𝑥% ≤ 40,
𝑥" + 𝑥$ + 𝑥% ≤ 100,

𝑥$ + 𝑥% ≤ 40,					𝑥" ≤ 10,
𝑥$ + 𝑥% ≤ 100,					𝑥" ≤ 10,

𝑥$ + 𝑥% ≤ 10,
𝑥$ ≤ 10,
𝑥% ≤ 10,

𝕄": 𝕄$: 𝕄%:

Fig. 2: Illustration of resource abstraction for the reservation request from
Fig. 1.

rate for each transfer, different ratios according to demand
ratios, or a fairness allocation such as max-min fairness).

Second, Mercator introduces a resource abstraction obfus-
cating protocol to ensure that member networks and other
external parties cannot associate an algebraic expression with
a corresponding member network, leading to a complete
unified aggregation of multiple domains, appearing as much as
possible as a single (virtual) network. Although such complete
integration may not be needed in all settings, it can be highly
beneficial in settings with higher privacy or security concerns.
For example, in the scenario of Fig. 1, this protocol ensures
that (1) the user cannot infer that the constraint x2 + x3 ≤
10 comes from network M3, and (2) that neither network
M1 nor M2 knows the existence of this constraint. Finally,
Mercator also introduces a super-set projection technique,
which substantially improves the scalability and performance
of Mercator through pre-computation and projection.

The main contributions of this paper are as follows:
• We identify the fundamental reason of the poor perfor-

mance of current reservation systems for multi-domain data
transfers as the lack of visibility of network topology and link
availability of each member network, and design Mercator,
a novel multi-domain network resource discovery system, to
address this issue;
• In Mercator, we propose a novel, compact resource

abstraction to represent the network resource availability
and sharing, e.g., bandwidth, among virtual circuit requests
through algebraic-expression enumeration;
• We design a resource abstraction obfuscating protocol

to prevent the user from associating the received algebraic
expressions with their corresponding member networks;
• We develop a super-set projection technique to substan-

tially improve the scalability of Mercator;
• We fully implement Mercator and conduct extensive

experiments using real network topologies and traces. Results
show that Mercator (1) efficiently discovers available network-
ing resources in collaborative networks on average 2 orders
of magnitude faster, and allows fairer allocations of network
resources; (2) preserves the member networks’ privacy with
little overhead; and (3) scales to a collaborative network of
200 member networks.

The remaining of this paper is organized as follows. We
give an overview of Mercator in Section II. We give the
details of the algebraic-expression-based resource abstraction
in Section III. We discuss the resource abstraction obfuscating
protocol and the super-set projection technique in Section IV
and Section V, respectively. We present the evaluation results
of Mercator in Section VI. We discuss the related work in
Section VII and conclude the paper in Section VIII.

II. MERCATOR OVERVIEW

This section presents the basic workflow and the architecture
of Mercator, and a brief overview of its three main compo-
nents: the resource abstraction through algebraic-expression
enumeration, the resource abstraction obfuscating protocol and
the super-set projection technique.

Mercator	
Domain
Server

Reservation
System

Step 2

Step 1

Step 3

𝕄" 𝕄#

UserAggregator

Routing Protocol Routing Protocol

Step 4

Mercator	
Domain
Server

Reservation
System

Fig. 3: The architecture and basic workflow of Mercator.

A. Basic Workflow

Mercator introduces and relies on a logically centralized
aggregator, and a Mercator domain server in each member
network. Consider a multi-domain network of N member
networks Mi, where i = 1, . . . , N (Fig. 3). The basic workflow
of Mercator to discover the multi-domain network bandwidth
availability and sharing for a set of requested circuits is:
• Step 1: A user (e.g., an application) submits a resource

discovery request for a set of circuits to the aggregator by
specifying the source and destination endpoints of each circuit.
• Step 2: After authenticating and verifying the authoriza-

tion of the request, the aggregator determines the member
networks that the circuits traverse, and queries the Mercator
domain server in each of these member networks to discover
their resource abstractions. The determination of the relevant
member networks for the aggregator to contact is further
described in Section II-B.
• Step 3: Upon receiving the query from the aggregator,

each Mercator domain server computes the resource abstrac-
tion (Section II-C, Section III) of the corresponding member
network, and executes an obfuscating protocol (Section II-C,
Section IV) to send the obfuscated resource abstraction to the
aggregator.
• Step 4: The aggregator collects the obfuscated resource

abstractions from the relevant member networks, and derives
the original resource abstractions to present to the user. Based
on the received information, the user determines the bandwidth
allocation for each circuit, and sends a reservation request to
the underlying reservation system.

The above workflow illustrates the main steps for a user
to discover the available network bandwidth and properties
for a set of circuits traversing multiple member networks.
To further improve the scalability of Mercator, Section V
introduces the super-set projection technique. It allows the
aggregator to proactively discover the resource abstractions for
a set of circuits between every pair of source and destination
member networks, and project the pre-computed result to get
the resource abstraction when receiving actual requests from
users. The super-set projection technique can significantly

reduce the delay, as well as number of messages, of resource
discovery, and allows the aggregator to process multiple re-
quests concurrently.

B. Architecture

This section describes the roles of the aggregator and
Mercator domain servers in further details (Fig. 3).
Aggregator: The aggregator is the main interface of Mercator.
It is responsible for authenticating and verifying the autho-
rization of users’ resource discovery requests (e.g., through
PKI [21])1, querying Mercator domain servers in member net-
works to discover network resource information, and returning
the collected abstractions to users.

The aggregator has connections to Mercator domain servers
in all member networks. It also acts as a Border Gateway
Protocol (BGP) [24] speaker, and has BGP sessions to all
member networks. Consequently, given a request for a set of
circuits F , the aggregator can infer the member-network path
for each circuit, i.e., the list of member networks a circuit will
traverse, and the ingress points of the circuits to each member
network2 (as described in Step 1 of workflow). As such, for
this request, the aggregator can also infer the set of circuits
traversing and consuming resources in each Mi, denoted as
Fi. It can then queries the Mercator domain servers at each
Mi by providing Fi and their ingress points to enter Mi.
Mercator domain server: Given a Mercator domain server
in member network Mi, its primary role is to compute the
resource abstraction of Mi. To achieve it, Mercator follows
the layering design principle to separate the routing protocol
and the available network resources. In this way, given a set of
circuits sent by the aggregator, their routes in Mi are computed
and provided by the routing protocol in Mi. The Mercator
domain server in Mi takes these routes as inputs, and derives
the available bandwidth and shared properties for the requested
flows along those routes. After computing the abstraction, the
Mercator domain server executes an obfuscating protocol to
send the obfuscated resource abstraction to the aggregator,
which addresses member networks’ privacy concern.

C. Key Design Points

Having illustrated the high-level workflow of Mercator, we
next give a brief overview on its key design points.
Resource abstraction through algebraic-expression enu-
meration (Section III): Mercator follows two important
principles in human-computer interaction, familiarity and uni-
formity, to design a unifying abstraction that captures the

1Mercator may adopt different authentication/authorization systems, e.g.,
OpenID [22] and SAML [23], depending on the specific requirements of
different collaborative science programs. We leave the detailed investigation
of this issue in Mercator as future work.

2In BGP glossary, such a path is also called an autonomous-system-path,
or an AS-path, which is announced in BGP update messages along BGP
sessions. The Route View Project [25] relies on a similar architecture with
BGP speakers establishing sessions with hundreds of peering networks to
collect BGP updates, and provides a real time monitoring infrastructure. In
particular, we observe that the AS path for each destination prefix is currently
already collected and made publicly available. As such, Mercator does not
introduce additional privacy issues.

properties (e.g., available bandwidth) of resources shared –
within and between member networks – by a set of requested
circuits. This novel, compact resource abstraction is the core
component of Mercator, and relies on algebraic expressions
(i.e., linear inequalities / equations), a concept familiar to
scientists and network engineers [26], to express the available
bandwidth sharing for a set of requested circuits to be reserved.

Existing resource abstractions, including graph-based ab-
stractions [27], [28] and the one-big-switch abstractions [29],
[30], either fail to protect the private, sensitive information
of each member network, or fail to capture the resource
sharing between virtual circuit requests. In contrast, the re-
source abstraction of Mercator, expressed through algebraic-
expression enumeration, naturally and accurately captures
the available bandwidth of shared resources by a set of
circuits without requiring member networks to reveal their
network topology. Compared with the Boolean response of
current resource reservation systems such as OSCARS, the
user receives the complete bandwidth feasible region of the
collaboration networks for the requested circuits represented
through algebraic expressions. A point in that feasible region
represents a feasible allocation of bandwidth for the different
circuits in the request. In other words, the user can choose any
point in the returned region as the bandwidth parameters for
the circuits to be reserved, using his own resource allocation
strategy (e.g., max-min fairness [31]).
Resource abstraction obfuscating protocol (Section IV):
The algebraic-expression-based abstraction provides a com-
pact, unifying representation of the multi-domain network
resource information. It does not require member networks
to reveal their network topologies and link availabilities.
However, it does expose the bandwidth feasible region of each
member network (illustrated by the examples in Section I
and Section III). Some member networks might prefer not
to expose such information, as malicious parties may use
it to identify links where to launch attacks (e.g., DDoS).
To address this issue, we develop a resource abstraction
obfuscating protocol. More specifically, the protocol prevents
the resource discovery aggregator from identifying the source
of each received resource constraint. The key idea consists of
having each Mercator domain server obfuscate its own set of
linear inequalities as a set of linear equations through a private
random matrix of its own and a couple of random matrices
shared with few other Mercator domain servers from other
member networks (e.g., through a consensus protocol), and
then sends the obfuscated set of linear equations back to the
aggregator using symmetric-key encryption, e.g., Advanced
Encryption Standard (AES) [32]. We demonstrate that from
the received obfuscated equations, the aggregator can retrieve
the actual bandwidth feasible region for the circuits across
member networks, but cannot associate any linear inequality
with its corresponding member network. As a result, even if a
malicious party obtains the bandwidth feasible region across
member networks, launching attacks to all member networks
is much harder than attacking a particular member network.

Super-set projection (Section V): To improve the scalability
of Mercator, we introduce the super-set projection technique.
The main idea consists of having the aggregator periodically
query Mercator domain servers to discover the resource ab-
straction for a set of circuits between every pair of source
and destination member networks. With these precomputed
abstractions, when a user submits a resource discovery re-
quest, the aggregator does not need to query the Mercator
domain servers to compute the abstraction for each received
request. Instead, the aggregator performs a projection on the
precomputed abstractions based on the source and destination
member networks of each circuit in the actual user request, to
get the abstraction for this request. For example, consider a
network of 2 member networks M1 and M2. Using super-set
projection, the aggregator queries the Mercator domain servers
at both member networks for a set of 2 circuits, one from M1

to M2 and the other from M2 to M1, and gets a set of linear
inequalities {x12 + x21 ≤ 100, x12 ≤ 50}. Suppose later a
user submits a request for 1 circuit, with the source being an
endpoint in M2 and the destination being an endpoint in M1,
to the aggregator. The aggregator projects the precomputed
set of linear inequalities by removing all variables that are not
x21, and returns the result {x21 ≤ 100} to the user.

Such projection is much more efficient than having Mercator
domain servers compute the abstraction for each received
circuit request. With this technique, when a user submits a
resource discovery request to the aggregator, the aggregator
does not need to query Mercator domain servers (Step 2 in
Section II-A), and the Mercator domain servers do not need to
compute and obfuscate the resource abstraction for the request
(Step 3 in Section II-A). Only when the user fails to reserve the
resource based on the projected abstraction will the aggregator
query the Mercator domain servers to obtain an up-to-date
abstraction for the user. As such, servers in the aggregator
pool can process requests concurrently (e.g., using optimistic
concurrency control), significantly improving the scalability,
fault-tolerance, and performance of Mercator.

After an overview of the key design points in Mercator, we
discuss these designs in detail in the next few sections.

III. RESOURCE ABSTRACTION THROUGH

ALGEBRAIC-EXPRESSION ENUMERATION

In this section, we give the details of the resource abstraction
through algebraic-expression enumeration, the core component
of Mercator. We first discuss the limitations of existing design
options. Then we give the specifications of this abstraction. We
also discuss how it handles important use cases, e.g., multicast,
multi-path routing and load balancing, in Appendix A.
Basic issue: As illustrated by the example in Section I,
the fundamental reason for the poor performance of existing
circuit reservation systems is they are lack of the visibility of
properties, e.g., bandwidth, of shared network resources for a
set of circuits to be reserved. One may think of a strawman to
let each member network provide the full topology information
to the aggregator in a graph-based abstraction [27], [28]. This
design, however, exposes all the sensitive, private information

of each member network, i.e., network topology and links’
availability, to external parties, leading to security breaches.

A second strawman is to use a one-big-switch abstraction
to provide simplified views of network information [29], [30],
which protects the privacy of each member network. However,
this abstraction fails to capture the information of shared
resource among virtual circuit requests and thus is inaccurate.
Consider the example in Fig. 4, where the user wants to reserve
two circuits from S1 to D1 and S2 to D2, respectively. Using
the one-big-switch abstraction in the P4P system [29], the
user will get the information that each circuit can reserve a
bandwidth up to 100 Gbps (Fig. 4a). However, the routes for
the two circuits – computed by the underlying routing protocol
– share common links l3 and l4 (Fig. 4b), making it infeasible
for both circuits to each reserve a 100 Gbps bandwidth.

S1 D1

S2 D2

100Gbps

100Gbps

(a) The one-big-switch
shows that each circuit can
get a 100 Gbps bandwidth.

S1 D1

S2 D2

l1 l2 l5l3 l4

l7
l8 l11l9 l10

l12

l6

Each	link:	100	Gbps

sw2

sw1

sw5

sw6

sw7

sw8

sw3

sw4

(b) The physical topology shows that the route of two
circuits share bottleneck links, i.e., l3 and l4, hence they
can only collectively get a 100 Gbps bandwidth.

Fig. 4: A running example for illustrating the inefficiency of one-big-
switch abstraction and the basic idea of resource abstraction through algebraic-
expression enumeration, where two circuits (S1, D1) and (S2, D2) need to
be reserved.

In some recent studies [33], [34], a variation of the one-big-
switch abstraction was proposed to define the resource sharing
among different traffic flows as operations defined in different
algebra fields. However, this abstraction is too complex and
can only handle single-path routing policies.
Basic idea: Different from the graph-based abstraction and
the one-big-switch abstraction, the basic idea of the resource
abstraction in Mercator is simple yet powerful: given a set of
requested circuits to be reserved, capture the properties (e.g.,
available bandwidth) of relevant shared resources, through a
set of algebraic expressions.

Specifically, suppose the Mercator domain server at a mem-
ber network receives the resource discovery request of a set
of circuits F entering this member network. For each circuit
fj ∈ F , we use xj to denote the available bandwidth the user
can reserve for this circuit. Upon receiving this request, the
Mercator domain server first checks the intradomain route of
each circuit fj . Then the server enumerates all the links in
the member network. For each link lu, it generates a linear
inequality:∑

xj ≤ lu.bandwidth,∀fj that uses link lu in its route.

Revisit the example in Fig. 4, the Mercator domain server
will generate the following set of linear inequalities Π(F):

x1 ≤ 100 ∀lu ∈ {l1, l2, l5, l6},
x2 ≤ 100 ∀lu ∈ {l7, l8, l11, l12},

x1 + x2 ≤ 100 ∀lu ∈ {l3, l4},
(1)

which accurately captures the bandwidth sharing among two
circuits’ routes.

Removing redundant linear inequalities: Observe the set of
linear inequalities in the above example. One may realize that
this set has redundancies, e.g., there are 4 same inequalities
x1 ≤ 100 in this set. Given Π(F), a linear inequality
y ∈ Π(F) is redundant if and only if the optimal solution of
any optimization problem with Π(F) as the constraint is the
same as that with Π(F)−{c} as the constraint. In our system,
the Mercator domain server adopts a classic compression
algorithm [35] to remove the redundant linear inequalities.
In this example, the compressed Π(F) will only contain one
inequality, i.e., x1 + x2 ≤ 100.
Geometric interpretation of resource abstraction: Given
Πi(F), the resource abstraction of Mi for a set of F circuits,
from the geometric perspective, represents the bandwidth
feasible region of Mi for providing bandwidths to this set of
circuits. Therefore, given a set of F circuits spanning over N
member networks, the union of Πi(Fi), where Fi ⊂ F is the
set of circuits that will consume resources in Mi, represents the
complete bandwidth feasible region of all N member networks
for the requested circuits.

Through algebraic-expression enumeration, the resource ab-
straction can handle not only unicast, as shown above, but
many other settings. In Appendix A, we show how it handles
three important use cases in collaborative data sciences.

IV. PRIVACY-PRESERVING RESOURCE ABSTRACTION
Given a member network, the algebraic-expression-based

resource abstraction accurately captures the shared available
bandwidth among virtual circuits without exposing its network
topology and links’ availability. However, as shown in Sec-
tion III, the geometric interpretation of a resource abstraction
is that it represents the bandwidth feasible region of the
corresponding member network for a set of circuits. Such
information is still private and sensitive, and a malicious
party who acquires it may use it to launch attacks to the
corresponding member network. To preserve the privacy of
bandwidth feasible region of member networks while still pro-
viding the accurate bandwidth sharing information for circuits,
we develop a resource abstraction obfuscating protocol in
Mercator. In this section, we first formally define the privacy-
preserving resource abstraction problem. Next, we present the
details of our protocol. We also conduct a rigorous analysis
of our protocol in Appendix B.

A. Privacy-Preserving Resource Abstraction Problem
Basic issue: We use the example in Fig. 5 to illustrate the
privacy concern of the resource abstraction, where Mercator
tries to discover the shared bandwidth of two virtual circuits
(S1, D1) and (S2, D2) across 3 member networks. In this
example, all links in black line are 1 Tbps aggregating links.
The inter-member-network-paths of two circuits are [M1,M2]
and [M1,M3], respectively. And two circuits share the same
intra-domain path in M1.

When receiving the resource discovery request, the Mercator
domain server at each member network will abstract the band-
width sharing of both circuits into a set of linear inequalities.
After removing the redundant inequalities of each member

D1

D2

S1
100Gbps

30Gbps
𝕄"

𝕄#

S2

𝕄$
30Gbps

1Tbps link

Fig. 5: A running example to illustrate the resource abstraction obfuscating.

network, the resource abstraction of each member network is:

Π1(F1) : {x1 + x2 ≤ 100}
Π2(F2) : {x1 ≤ 30}
Π3(F3) : {x2 ≤ 30}.

(2)

If each Mercator domain server directly sends its own
resource abstraction to the aggregator, the aggregator will have
the knowledge of the bandwidth feasible region of each indi-
vidual member network. This makes the whole collaboration
network vulnerable because the aggregator is a single point
of failure possessing the private information of all member
networks. In other words, if an attacker gains the control to
the aggregator, he can leverage such specific information to
attack any member network.
Problem definition: To make Mercator functional and secure,
therefore, we need a solution that provides the accurate band-
width sharing information for the set of virtual circuits to be
reserved, and at the same time protects each member network
from exposing its private bandwidth feasible region. To this
end, we first give a formal definition of privacy-preserving,
equivalent resource abstraction:

Definition 1 (Equivalent, Privacy-Preserving Resource Ab-
straction): Given a set of circuits F that span over N > 1
member networks, the resource abstraction Πp(F) collected
by the aggregator is equivalent and privacy-preserving if (1)
the bandwidth feasible region represented by Πp(F) is the
same as that represented by ∪iΠ(Fi) where i = 1, 2, . . . , N ;
and (2) for any linear inequality c ∈ Πp(F), the aggregator
cannot associate it with a particular member network.
In this definition, Π(Fi) ∪ Π(Fj) means the union of two
sets of linear inequalities. Geometrically speaking, it means
the intersection of the feasible regions represented by Π(Fi)
and Π(Fj). With this definition, we further define the privacy-
preserving resource abstraction problem:

Problem 1 (Privacy-Preserving Resource Abstraction Prob-
lem): Given a set of circuits F that span over N > 1
member networks, design a security protocol in the resource
discovery system to ensure that (1) the aggregator receives
the equivalent, privacy-preserving resource abstraction Πp(F);
and (2) for any Mi, it does not know any linear inequality from
any other Πj(Fj), where j 6= i.
Security model: In this paper, we assume a semi-honest
security model, i.e., the aggregator and all member networks
will not deviate from the security protocol, but merely try to
gather information during the execution of the protocol [36].
This is sufficient for collaboration science networks where
member networks share resources to collaboratively conduct
common tasks such as data transfers, storage and analytics.
B. Resource Abstraction Obfuscating Protocol

There are different design options for Problem 1, e.g.,
garbled circuit based protocols [37]. However, these designs

(1) All member networks agree on k;
(2) Each𝕄" generates Ci and Di and shares with𝕄"#$;

(3) Each𝕄" transforms 𝑨𝒙 ≤ 𝒃 into augment form, and
obfuscates it using Ci, Di, Ci+1, Di+1 and a private Pi;

(4) Each𝕄" encrypts the obfuscated linear equations and
transmits to the aggregator;
(5) The aggregator decrypts and unmasks the bandwidth
feasible region across all member networks.

Initialization

Obfuscation

Transmission

Fig. 6: The resource abstraction obfuscating protocol.

would incur expensive computation and communication over-
head, hence are not suitable for the need of multi-domain
resource discovery. In this paper, we tackle this problem by
designing a novel resource abstraction obfuscating protocol
that only requires simple operations on matrices, i.e., addition
and multiplication.
Basic idea: Our protocol leverages random matrix theory [38],
[39]. In particular, each Mi independently computes and sends
to the aggregator a set of disguised linear equations, which are
derived from the private Πi(Fi), a random matrix Pi known
only to Mi, two random matrices Ci and Di known only to Mi

and Mi−1, and two random matrices Ci+1 and Di+1 known
only to Mi and Mi+1.
Protocol: The protocol is composed of three phases: initial-
ization, obfuscation and transmission, as shown in Fig. 6. For
the simplicity of presentation, we let mi = |Πi(Fi)|, i.e.,
the number of linear inequalities in Πi(Fi) after redundancy
removal, and Mi =

∑i
j=1 mj . During the initialization phase,

all member networks agree on a common k >
∑

mi. For
each Mi where i = 1, 2, . . . , N − 1, it generates a k-by-
(|F |+mi +mi+1) random matrix Ci = [C

|F|
i Ci

mi Ci
mi+1],

and a k-by-1 random matrix Di, and sends to Mi+1. And we
define C0, D0, CN and DN as zero matrices. As we will
illustrate in the remaining of this section, these zero matrices
are used for presentation completeness and will not affect the
correctness of the obfuscating protocol.

During the obfuscation phase, each Mi introduces mi slack
variables, denoted by xs

i , to transform Πi(Fi) = Aix ≤ bi

from the standard form to the augment form and gets the
following equivalent linear system:[

Ai Imi

] [
x, xs

i

]
= bi. (3)

We then add slack variables introduced by all other member
networks with zero coefficients into the linear system in
Equation (3) and get the following equivalent linear system:[

Ai 0Mi−1
Imi 0

] [
x, xs

1, . . . , xs
i , . . . , xs

N

]
= bi. (4)

Next, each Mi generates a private random matrix Pi ∈
Rk×mi , and left-multiplies both sides of Equation (4) to get:[

PiAi 0Mi−1
Pi 0

] [
x, xs

1, . . . , xs
i , . . . , xs

N

]
= Pibi. (5)

Then each Mi adds

[C|F|i −C
|F|
i−1 0Mi−2

−C
mi−1
i−1 −Cmi

i−1 + C
mi
i C

mi+1
i 0] ,

to the coefficient matrix of the left-hand-side (LHS) of Equa-
tion (5), and adds −Di−1 + Di to its right-hand-side (RHS)
to get Equation (6) where it can be observed that for each Mi,

[
PiAi + C

|F|
i −C

|F|
i−1 0Mi−2

−Cmi−1

i−1 Pi −C
mi
i−1 + C

mi
i C

mi+1

i 0
]
·
[
x, xs

1, . . . , xs
i , . . . , xs

N

]
= Pibi −Di−1 + Di, (6)

the coefficient matrix of LHS of Equation (6) is of dimension
k-by-|F |+ MN , and the RHS is of dimension k-by-1.

In the transmission phase, each Mi encrypts the set of linear
equations in Equation (6) using a symmetric-key algorithm,
e.g., AES, and sends the cypher text to the aggregator. After
collecting the linear equations from all member networks,
the aggregator decrypts them and computes the sum of all
LHS matrices and RHS matrices of all member networks,
respectively. After simple elimination, the LHS sum is ex-
pressed as: [

∑
PiAi P1 . . . PN] . Similarly, the sum of

all RHS matrices of all member networks can be expressed as∑
Pibi. Denoting [xs

1, . . . ,x
s
N] as xs, the aggregator can get

the privacy-preserving abstraction Πp(F):[∑
PiAi P1 . . . PN.

] [
x, xs

]
=
∑

Pibi. (7)

Example: We use the example in Fig. 5 to illustrate the
resource abstraction obfuscating protocol. For simplicity, we
assume three member networks agree on k = 4. The pri-
vate random matrices P1, P2 and P3 are generated as
P1 = [11, 49, 95, 34], P2 = [58, 22, 75, 25], and P3 =
[50, 69, 89, 95]. The resource abstraction Πp(F) obtained by
the aggregator is:

69x1 + 61x2 + 11xs
11 + 58xs

21 + 50xs
31 = 4340,

71x1 + 118x2 + 49xs
11 + 22xs

21 + 69xs
31 = 7630,

170x1 + 184x2 + 95xs
11 + 75xs

21 + 89xs
31 = 14420,

59x1 + 129x2 + 34xs
11 + 25xs

21 + 95xs
31 = 7000,

where xs
11, xs

21 and xs
31 are slack variables. Assume the user’s

objective is to maximize the throughput, i.e., x1 + x2. Using
this set of linear inequalities as the constraint, it can get the
optimal solution where x1 = x2 = 30 Gbps, the same as when
using Equation (2) as the constraint.

We conduct rigorous analysis on different properties (e.g.,
correctness, security and efficiency) of the proposed obfuscat-
ing protocol, which can be found in Appendix B.

V. SUPER-SET RESOURCE ABSTRACTION PROJECTION

One concern of the resource discovery is its scalability,
as the number of resource discovery requests may be large
in collaboration networks and each request would trigger a
resource discovery procedure. This procedure requires the
communication between the aggregator and the user, and
between the aggregator and every Mercator domain server in
member networks. Furthermore, the introduction of resource
abstraction obfuscating further increases the communication
and computation overhead of resource discovery. To address
this issue, we develop a novel super-set projection technique.
We describe its basic idea in this section, and leave the details
of this technique in Appendix C.
Basic idea: The intuition of super-set projection is simple:
to have the aggregator proactively discover the resource ab-
straction for a set of circuits between every pair of source
and destination member networks, and use these pre-computed
abstractions to quickly project to get the resource abstraction
for user’s requests.

In particular, in a collaboration network of N member
networks, the super-set projection technique first simulates
the need of N(N − 1) artificial circuits, where each circuit
fij represents an artificial circuit from Mi to Mj . With this
artificial resource discovery request, the aggregator follows
the normal resource discovery process to discover the shared
bandwidth of all these N(N − 1) circuits across the whole
collaboration network, represented by Πfull. When a user
sends an actual resource discovery request for a set of F
circuits, the aggregator checks the source and destination
member networks of each circuit, and uses the stored Πfull to
derive Π(F) by removing unrelated inequalities and unrelated
artificial circuits, instead of starting a new resource discovery
procedure. In this way, the overhead of resource discovery is
reduced to a single round of message exchange between the
aggregator and the user.

𝕄"

𝕄#

𝕄$

𝑥"# + 𝑥"$ ≤ 	60
𝑥"$ + 𝑥#$ ≤ 	80
	𝑥$#	+		𝑥$" ≤ 	100

𝑥#" ≤ 	50
𝑥"$ ≤ 40

Π0122:

Fig. 7: An illustrating example of super-set projection.

Example: Consider an example of 3 member networks in
Fig. 7. With the super-set projection, the aggregator discovers
the bandwidth sharing of all 3 × 2 = 6 network-to-network
artificial circuits as Πfull in the figure. When a user submits
a resource discovery request for two circuits (S1, D1) and
(S2, D2), where S1 is in M1, S2 and D1 are in M2 and D2 is
in M3. The aggregator first maps the (S1, D1) to the artificial
circuit from M1 to M2, and (S2, D2) to the artificial circuit
from M2 to M3. Next, it projects Πfull to these two circuits
to get the resource abstraction for these two circuits by (1)
removing all linear inequalities that do not contain x12 or x23,
and (2) for every remaining linear inequality, remove all the
items on the LHS that are not x12 or x23. Finally, it returns
the resource abstraction: {x12 ≤ 60, x23 ≤ 80}, to the user.

VI. EVALUATION

We implement Mercator on commodity servers (i.e.,
equipped with Intel(R) Xeon(R) E5-2609 2.50GHz 4-core
CPU and 32 GB memory) and evaluate its performance based
on a member-network-level topology from a large federation
of networks supporting large-scale distributed science col-
laborations, and using real traffic traces from recent science
experiments. After describing our experimental setup, we
first demonstrate the benefits of resource abstraction through
algebraic-expression enumeration. Second, we demonstrate the
efficiency of the proposed resource abstraction obfuscation
protocol. Finally, we demonstrate that the super-set projection
technique substantially increases the scalability of Mercator.
A. Experimental Setup

We evaluate Mercator on the member-network-level topol-
ogy from LHC Open Network Environment (LHCONE), a
global science network consisting of 62 member networks,
where scientists conduct large-scale distributed analytics. Be-
cause inter-member-network routing typically is not based

on shortest path routing, but follows business relationships
(e.g., customer, peer, provider), we label the connections
between every pair of connected member networks with their
business relationship using the CAIDA network relationships
dataset [40], and we compute the inter-member-network paths
according to conventional policies for selecting and exporting
routes. For member networks’ intradomain topologies, we ran-
domly select a topology for each network from the Topology
Zoo [41], which provides a collection of real intradomain
topologies. The topology of transit member networks varies
from 31 switches/routers with 33 links to 49 switches/routers
with 85 links. The topology of stub member networks (e.g.,
campus science networks) ranges from 7 switches/routers with
6 links to 21 switches/routers with 44 links.

B. Benefits of Resource Abstraction Through Algebraic-
Expression Enumeration

The first set of experiments demonstrate the benefits of the
resource abstraction through algebraic-expression enumera-
tion. We show that this abstraction reduces the time to discover
network resources by up to 3 orders of magnitude, and allows
fairer allocations of network resources.

1) Methodology: To evaluate the benefits of this resource
abstraction, we replay the trace from a large-scale distributed
experiment, and submit network resource reservations for the
corresponding flows. More specifically, we use the actual trace
from the CMS experiment [42], a major scientific experiment
in LHC, and a main source of traffic in LHCONE. We
extract the traffic flows, with their source member network,
destination member network and the time. We focus on the
48-hour trace starting from December 14, 2017 and slice the
data trace into 24 continuous 2-hour time windows. We apply
the resources reservation once every time window. In other
words, resources for traffic flows starting at the same time
window are reserved in the same request, and we assume all
resources will be released in the next time window.

We compare the performance of Mercator with that of ex-
isting reservation systems. In particular, for existing systems,
we consider one that adopts a probe-requests based approach:
• Mercator: As described in Section II, for every resource

discovery request, the aggregator queries the relevant member
networks for their resource abstraction, and then derives the
feasible bandwidth allocation region.
• Probe requests: As described in Section I, existing

resource reservation systems such as OSCARS process each
circuit in the request one at a time and in a sequential order.
For each circuit, the resource reservation system initiates
a depth-first search to probe if each member network can
provide the requested bandwidth. We set the initial requested
bandwidth for a circuit as C/N where C is the source host’s
capacity, and N is the number of flows from that host. In the
event of a failure, the resource reservation system performs
a binary search of the available bandwidth repeatedly halving
the requested bandwidth until success. The process is repeated
for each circuit in the request.

0 10 30 4020
Time (Hour)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fa
ir

n
e
ss

 M
e
a
su

re

Probe Requests

Mercator

(a) Obj. = max-min fairness

0 10 20 30 40
Time (Hour)

0.0

10.0

20.0

30.0

40.0

T
h
ro

u
g

h
p

u
t

(T
b

p
s)

Probe Requests

Mercator

(b) Obj. = max total throughput

Fig. 8: Comparison of performance between the probe-requests approach
and Mercator in different objectives.

2) Results: First, we consider that the goal of the resource
allocation policy is to maximize the minimum throughput of
all the requested flows (max-min fairness). Such a policy is
commonly desired as it ensures high throughput and fairness
across the circuits. We compare the fairness of the network
resource allocations obtained with Mercator to that obtained
with the probe-requests based solution. We adopt Jain’s fair-
ness index [43] to measure the fairness [31]:

J(x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n ·
∑n

i=1 xi
2

where xi is the ratio of the actual allocation and the optimal
fair allocation for a single flow. Fig. 8a shows that with
resource abstraction, Mercator can always compute the optimal
max-min fairness allocation. Hence its fairness index is always
1. In contrast, the fairness index of the probe-requests based
solution has an average of 0.37, and even drops to 0 at times.

Second, we consider the case where the objective is to
maximize the total throughput. Fig. 8b shows that the total
throughput of Mercator is larger than that obtained by the
probe-requests based solution, by 15% on average, and up to
20%. The results are noteworthy given that Mercator assumes
the routes for each circuit to be completely determined by
the underlying intradomain routing protocol. In contrast, the
probe-requests approach sequentially explores every possible
route for each circuit until it finds an available one. In other
words, even with much less exploration, Mercator outperforms
the probe requests. Allowing Mercator to consider not only the
routes provided by the underlying routing protocols, but also
all other available routes, could lead to significant additional
improvements. We leave the extension of Mercator to consider
all possible routes in the network as future work.

Fig. 9 presents the total resource discovery latency for
completing all circuits resource reservations in a time window.
We assume the aggregator to be in New York, and consider
network latencies as measured in [44]. The figure shows the
total resource discovery latency with Mercator can reduce the
time to discover network resources by two orders of magnitude
on average and up to three orders of magnitude at times.
This is because resource abstraction allows users to query
the information from different member networks in parallel.
In contrast, existing probe-requests based solutions process
requests sequentially, and continuously probe to discover the
available network resources.

Finally, we highlight that the probe-requests based solution
can suffer high request failure ratio, i.e., a large number of
requests cannot succeed: We define a failure of a request as the

0 10 30 4020
Time (Hour)

100

101

102

103

104

105

106

R
e
so

u
rc

e
 D

is
co

v
e
ry

 L
a
te

n
cy

 (
m

s)
Probe Requests

Mercator

Fig. 9: Resource discovery la-
tency of the probe-requests ap-
proach and Mercator.

0 10 30 4020
Time (hour)

0

20

40

60

80

100

Ra
tio

 o
f F

ai
le

d
Re

qu
es

ts
 (%

)

Fig. 10: Ratio of failed requests
in the probe-requests approach.

inability to reserve resource for the circuit, due to the lack of
remaining capacity despite the gradually decreasing requested
bandwidth. Fig. 10 shows that during the 48-hour period
Mercator is running, the probe-requests based solution has an
average request failure ratio of 73%. In other words, more than
70% of the circuits cannot reserve network resources. This
is because the probe-requests approach processes the request
for each circuit sequentially. Therefore, the first few circuits
may successfully reserve network resources and saturate the
network. As such, despite achieving a total throughput similar
to Mercator, the majority of the latter requests may fail as the
links do not have any spare resources. In contrast, the request
failure ratio of Mercator is null because Mercator returns a
feasible region for the set of circuits so that the user can make
optimal reservation decisions for all circuits.

C. Efficiency of Resource Abstraction Obfuscating Protocol
This second set of experiments evaluate the performance of

the resource abstraction obfuscating protocol. We show that
this protocol efficiently scales for collaboration networks of
200 member networks, with a maximal overall latency around
3 seconds and an average data transmission overhead between
the aggregator and member networks of only around 180 KB.

1) Methodology: We conduct our experiment by using the
member-network-level topology from the LHC Open Network
Environment (LHCONE). In each round of the experiment, we
randomly select a set of member networks from the topology.
For each chosen member network, we randomly select a
set of m linear inequalities, where m is randomly chosen
between 5 and 15, to represent the bandwidth feasible reason
for 10 circuits in this member network. For the encryption
and decryption operations in the obfuscating protocol, we use
the AES algorithm, provided by the Python Cryptography
Toolkit (pycrypto) [45]. The parameters k, Ci and Di are
pre-configured as discussed in Appendix B.

We consider two metrics, i.e., the latency and the data
transmission overhead of the resource abstraction obfuscating
protocol. First, the overall latency of the protocol is measured
from the beginning of the obfuscation phase, when each
member network independently starts to obfuscate its own set
of linear inequalities, to the end of the transmission process,
when the aggregator obtains

∑
PiAix = b. We use the

field statistic results measured in [44] as the communication
latencies between the aggregator and the Mercator domain
servers at the different member networks. Second, the data
transmission overhead is measured as the size of the set of
encrypted, obfuscated linear equations transferred from each

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200

La
te
nc
y2
(m

s)

Number2of2Member2Networks

Processing
Transfer

(a) Overall latency.

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90 100110120130140150160170180190200

La
te
nc
y2
(m

s)

Number2of2Member2Networks

Matrix'Computation

Encryption'&'Decryption

(b) Processing latency.
Fig. 11: The latency of the resource abstraction obfuscating protocol.

0
20
40
60
80

100
120
140
160
180
200

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Av
g
Tr
an
sm

iss
io
n6
Da

ta
6S
ize

6
Pe
r6M

em
be
r6N

et
w
or
k6
(K
B)

Number6of6Member6Networks
Fig. 12: The data transmission overhead of the resource abstraction
obfuscating protocol.

member network to the aggregator. We vary the number of
member networks from 10 to 200, in a step size of 10. For
each number of member networks, we repeat the experiment
10 times and measure the average values of these metrics.

2) Results: We present the results of our experiments in
Fig. 11 and Fig. 12. In particular, Fig. 11a shows the overall
latency of the obfuscating protocol under different numbers of
member networks, together with a break down on processing
delay and transmission latency. We observe that even for a
large collaboration network with 200 member networks, which
is larger than most existing operational collaboration networks,
the overall latency of the resource abstraction obfuscating
protocol is only slightly over 3 seconds, which demonstrates
that the latency of this protocol is reasonably low. We also
observe that the processing latency takes a much higher per-
centage than the transmission latency and that the processing
latency has a linear growth as the number of member networks
increases. We further plot the breakdown of the processing
latency. Fig. 11b shows that both the cryptography operations
of AES and the matrix operations in the resource abstraction
obfuscating protocol increases linearly as the number of mem-
ber networks increases, but the AES encryption and decryption
operations are the most expensive operations in the protocol
(i.e., up to 2.4 seconds for federations of 200 member net-
works). More importantly, although the obfuscating protocol
may take over 3 seconds for a federation of 200 member
networks, we emphasize that with the super-set projection
technique, the Mercator domain servers do not need to execute
the obfuscating protocol for each individual request.

Next, we present the average data transmission overhead of
the obfuscating protocol at each member network in Fig. 12.
We see in this figure that even after the encryption, the
size of data to be transmitted from member networks to the
aggregator is still very small. For example, for a collaboration
network with 200 member networks, the average size of data
transmitted from a member network to the aggregator is only
180 KB. As discussed in Appendix B, this is because most of
the columns of the LHS coefficient matrix are zero-columns
and each member network only needs to send nonzero-

columns to the aggregator. The linear scaling of the data
transmission overhead (i.e., the ciphertext) at each member
network comes from the linear increase of the number of
disguised linear equations (i.e., the plaintext), which is caused
by the linear increase of k due to the increased number of
member networks. This is consistent with Proposition 3 in
Appendix B.

D. Efficiency of Super-Set Projection
In this experiment, we evaluate the efficiency of the super-

set projection technique in improving the scalability of Mer-
cator. We show that this mechanism improves the resource
discovery delay of Mercator by 2 times, and that its update
latency is within seconds in a collaborative network with 200
member networks.

1) Methodology: We conduct our experiments by using the
same settings as in Section VI-B1. We focus on two metrics.
The first one is the resource discovery latency. When Mercator
uses super-set projection, the resource discovery latency is
reduced to only the round-trip time from the user to the
Mercator aggregator because the aggregator can derive the
resource abstraction for a request from the precomputed Πfull.

To have a comprehensive understanding on the scalability
of super-set projection, we are also interested in a second
metric, the update latency. This is measured as the resource
discovery latency of from the time the aggregator starting
the artificial resource abstraction discovery procedure to the
time the aggregator receives the latest Πfull. In particular, we
measure this latency under different collaboration scales by
varying the number of member networks and the number of
stub member networks in the collaborative network. For each
setting, we repeat the experiment 10 times and compute the
average update latency. In each repetition, we also randomly
choose different sizes of intradomain topologies from the
Topology Zoo dataset for each member network.

2) Results: Fig. 13 compares the resource discovery latency
of Mercator with and without super-set projection. We observe
that the super-set projection technique decreases the average
resource discovery latency by around 2 times. Fig. 14 presents
the update latency of this mechanism. It shows that even
in a collaborative network with 200 member networks, the
update latency of Πfull is still less than 10 seconds. Most
importantly, although computing Πfull may take up to ten
seconds for a federation of 200 member networks, we em-
phasize that resource discovery requests do not get blocked at
the aggregator because servers from the aggregator pool can
still process incoming requests using the previously computed
resource abstraction, which is continuously locally updated
(e.g., available resources are continuously reduced as incoming
requests reserve resources).

VII. RELATED WORK
Many multi-domain network resource information and

reservation systems [4], [5], [8]–[10], [46] have been devel-
oped to support collaborative data sciences. Multiple multi-
domain resource discovery systems (e.g., [11]–[17]) are also
designed to discover endpoint resources (i.e., computation and

0 10 20 30 40
Time (hour)

0

200

400

600

800

1000

La
te

n
cy

(m
s)

Mercator w/o super-set projection
Mercator with super-set projection

Fig. 13: Comparison of latency
between Mercator with and without
super-set projection.

0 25 50 75 100 125 150 175 200
Number of Member Networks

0

2

4

6

8

10

T
im

e
 (

se
co

n
d
)

Fig. 14: Update latency of super-
set projection.

storage resources) and their availability for different services
across multiple domains. In contrast, there has been little
progress on multi-domain network resource discovery systems
that provide fine-grained, global network resource information,
to support high-performance, collaborative data sciences.

Many cluster / grid resource management systems [15],
[17], [27], [28], [47]–[53] adopt a graph-based abstraction
to discover and manage network resources. However, in a
multi-domain collaborative network, this abstraction would
reveal the network topology and link availabilities of member
networks, leading to security breaches. Some systems [29],
[30] use a one-big-switch abstraction to provide a simplified
view of network resources, which protects the privacy of
member networks but cannot provide accurate information of
shared network resource for concurrent traffic flows. Some
recent studies [26], [33], [34], [54], [55] propose variations
of the one-big-switch abstraction to represent the resource
availability and sharing among different data traffic flows
using operations defined on different algebra fields. However,
this abstraction (1) cannot handle complex routing and traffic
engineering policies, e.g., WCMP, and (2) will raise security
concern when applied to multi-domain science collaborations.
In contrast, Mercator provides fine-grained, global network
resource information, to support high-performance, collabo-
rative data sciences, through a unifying representation and
composition framework to reveal compact, complete multi-
domain network resource information.

VIII. CONCLUSION
We present Mercator, a novel multi-domain network re-

source discovery system to provide fine-grained, global net-
work resource information, to support high-performance, col-
laborative data sciences. The core of Mercator is a unifying
representation resource abstraction using algebraic expressions
to capture multi-domain network available bandwidth. We
develop a resource abstraction obfuscating protocol and a
super-set projection technique to ensure the privacy-preserving
and the scalability of Mercator. Evaluation using real data
demonstrates the efficiency and efficacy of Mercator.

ACKNOWLEDGMENT

The authors thank Kai Gao, Geng Li, Linghe Kong, Ennan Zhai, Alan
Liu, Yeon-sup Lim and Haizhou Du for their help during the prepara-
tion of this paper. The authors also thank the anonymous reviewers for
their valuable comments. This research is supported in part by NSFC
grants #61702373, #61672385 and #61701347; China Postdoctoral Science
Foundation #2017-M611618; NSF awards #1440745, #1246133, #1341024,
#1120138, and #1659403; DOE award #DE-AC02-07CH11359; DOE/ASCR
project #000219898; Google Research Award, and the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agreement Number
W911NF-16-3-0001.

REFERENCES

[1] “The Large Hadron Collider (LHC) Experiment,” https://home.cern/
topics/large-hadron-collider.

[2] “The Square Kilometre Array,” https://www.skatelescope.org/.
[3] “The Linac Coherent Light Source,” https://lcls.slac.stanford.edu/.
[4] “Oscars: On-demand secure circuits and advance reservation system,”

https://www.es.net/engineering-services/oscars/.
[5] M. Campanella, R. Krzywania, V. Reijs, D. Wilson, A. Sevasti, K. Sta-

mos, and C. Tziouvaras, “Bandwidth on demand services for european
research and education networks,” in Bandwidth on Demand, 2006 1st
IEEE International Workshop on. IEEE, 2006, pp. 65–72.

[6] C. Guok, E. N. Engineer, and D. Robertson, “Esnet on-demand se-
cure circuits and advance reservation system (oscars),” Internet2 Joint,
vol. 92, 2006.

[7] W. Johnston, C. Guok, and E. Chaniotakis, “Motivation, design, de-
ployment and evolution of a guaranteed bandwidth network service,” in
Proceedings of the TERENA Networking Conference, 2011.

[8] B. Riddle, “Bruw: A bandwidth reservation system to support end-user
work,” in TERENA Networking Conference, Poznan, Poland, 2005.

[9] J. Sobieski, T. Lehman, and B. Jabbari, “Dragon: Dynamic resource
allocation via gmpls optical networks,” in MCNC Optical Control Planes
Workshop, Chicago, Illinois, 2004.

[10] X. Zheng, M. Veeraraghavan, N. S. Rao, Q. Wu, and M. Zhu, “Cheetah:
Circuit-switched high-speed end-to-end transport architecture testbed,”
IEEE Communications Magazine, vol. 43, no. 8, pp. S11–S17, 2005.

[11] Y. Deng, F. Wang, and A. Ciura, “Ant colony optimization inspired
resource discovery in p2p grid systems,” The Journal of Supercomputing,
vol. 49, no. 1, pp. 4–21, 2009.

[12] S. Fitzgerald, I. Foster, C. Kesselman, G. Von Laszewski, W. Smith,
and S. Tuecke, “A directory service for configuring high-performance
distributed computations,” in IEEE HPDC 1997.

[13] A. Iamnitchi and I. Foster, “A peer-to-peer approach to resource location
in grid environments,” in Grid resource management. Springer, 2004,
pp. 413–429.

[14] T. Kocak and D. Lacks, “Design and analysis of a distributed grid
resource discovery protocol,” Cluster Computing, vol. 15, no. 1, pp.
37–52, 2012.

[15] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and
F. Wurthwein, “The pilot way to grid resources using glideinWMS,” in
CSIE. IEEE, 2009, pp. 428–432.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on Network-
ing (TON), vol. 11, no. 1, pp. 17–32, 2003.

[17] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the Condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[18] R. Ahmed, N. Limam, J. Xiao, Y. Iraqi, and R. Boutaba, “Resource
and service discovery in large-scale multi-domain networks,” IEEE
Communications Surveys & Tutorials, vol. 9, no. 4, pp. 2–30, 2007.

[19] A. Hameurlain, D. Cokuslu, and K. Erciyes, “Resource discovery in
grid systems: a survey,” International Journal of Metadata, Semantics
and Ontologies, vol. 5, no. 3, pp. 251–263, 2010.

[20] N. J. Navimipour, A. M. Rahmani, A. H. Navin, and M. Hosseinzadeh,
“Resource discovery mechanisms in grid systems: A survey,” Journal of
Network and Computer Applications, vol. 41, pp. 389–410, 2014.

[21] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson,
“Internet x. 509 public key infrastructure (pki) proxy certificate profile,”
Tech. Rep., 2004.

[22] N. Sakimura, J. Bradley, M. Jones, and B. de Medeiros, “C. mortimore,”
openid connect core 1.0”, november 2014.”

[23] O. S. S. T. Committee et al., “Security assertion markup language (saml)
2.0,” ht tp://www. oasis-open. org/committees/tc home. php, 2012.

[24] Y. Rekhter, S. Hares, and D. T. Li, “A Border Gateway Protocol
4 (BGP-4),” RFC 4271, Jan. 2006. [Online]. Available: https:
//rfc-editor.org/rfc/rfc4271.txt

[25] “Route views project,” http://www.routeviews.org/routeviews/.
[26] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined

network optimization using sol.” in NSDI, 2016, pp. 223–237.
[27] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.

Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in NSDI, 2011.

[28] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
EuroSys. ACM, 2015, p. 18.

[29] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz,
“P4p:provider portal for applications,” Acm Sigcomm Aug, vol. 38,
no. 4, pp. 351–362, 2008.

[30] R. Alimi, Y. Yang, and R. Penno, “Application-layer traffic optimization
(ALTO) protocol.”

[31] J. Y. Boudec, “Rate adaptation, congestion control and fairness: A
tutorial,” Web Page, no. Oct, 2000.

[32] F. P. Miller, A. F. Vandome, and J. McBrewster, “Advanced encryption
standard,” 2009.

[33] K. Gao, C. Gu, Q. Xiang, X. Wang, Y. R. Yang, and J. Bi, “ORSAP:
abstracting routing state on demand,” in IEEE ICNP 2016.

[34] K. Gao, Q. Xiang, X. Wang, Y. R. Yang, and J. Bi, “Nova: Towards on-
demand equivalent network view abstraction for network optimization,”
in ACM/IEEE IWQoS 2017, 2017.

[35] J. Telgen, “Identifying redundant constraints and implicit equalities in
systems of linear constraints,” Management Science, vol. 29, no. 10, pp.
1209–1222, 1983.

[36] M. Raykova, Secure Computation in Heterogeneous Environments: How
to Bring Multiparty Computation Closer to Practice? Columbia
University, 2012.

[37] A. C.-C. Yao, “How to generate and exchange secrets,” in IEEE FOCS
1986.

[38] X. Feng and Z. Zhang, “The rank of a random matrix,” Applied
mathematics and computation, vol. 185, no. 1, pp. 689–694, 2007.

[39] O. L. Mangasarian, “Privacy-preserving horizontally partitioned linear
programs,” Optimization Letters, vol. 6, no. 3, pp. 431–436, 2012.

[40] “The CAIDA AS Relationships Dataset, 2016,” http://www.caida.org/
data/as-relationships/.

[41] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” vol. 29, no. 9, pp. 1765–1775.

[42] “CMS Task Monitoring,” http://dashb-cms-job.cern.ch/.
[43] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness

and discrimination for resource allocation in shared computer system.
Eastern Research Laboratory, Digital Equipment Corporation Hudson,
MA, 1984, vol. 38.

[44] “Global Ping Statistics - WonderNetwork, 2018,” https://wondernetwork.
com/pings/.

[45] “Python Cryptography Toolkit,” https://pypi.python.org/pypi/pycrypto.
[46] “Network service interface,” https://redmine.ogf.org/projects/nsi-wg.
[47] “Under the hood: Scheduling MapReduce jobs more efficiently with

Corona,” http://on.fb.me/TxUsYN, [Online; accessed: 09-May-2017].
[48] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and

L. Zhou, “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” in OSDI, 2014, pp. 285–300.

[49] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in SoCC. ACM, 2015, pp. 111–124.

[50] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy:fair scheduling for distributed computing clusters,” in
IEEE International Conference on Recent Trends in Information Sys-
tems, 2009, pp. 261–276.

[51] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low Latency Geo-distributed Data Analytics,” in SIG-
COMM. ACM, 2015, pp. 421–434.

[52] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet: Wan-
aware optimization for analytics queries,” in Usenix Conference on
Operating Systems Design and Implementation, 2016, pp. 435–450.

[53] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese,
“WANalytics: Analytics for a geo-distributed data-intensive world,” in
CIDR, 2015.

[54] Q. Xiang, S. Chen, K. Gao, H. Newman, I. Taylor, J. Zhang, and Y. R.
Yang, “Unicorn: Unified resource orchestration for multi-domain, geo-
distributed data analytics,” in 2017 IEEE SmartWorld, DAIS Workshop.

[55] Q. Xiang, X. Wang, J. Zhang, H. Newman, Y. R. Yang, and Y. J.
Liu, “Unicorn: Unified resource orchestration for multi-domain, geo-
distributed data analytics,” in INDIS Workshop. IEEE, 2017.

[56] Q. Xiang, J. J. Zhang, X. T. Wang, Y. J. Liu, C. Guok, F. Le,
J. MacAuley, H. Newman, and Y. R. Yang, “Fine-grained, multi-domain
network resource abstraction as a fundamental primitive to enable high-
performance, collaborative data sciences,” in Technical Report.

APPENDIX A
USE CASES

In this appendix, we show how resource abstraction handles
three important use cases in collaborative data sciences.

S1 D1

S2 D2

l1 l2 l5l3 l4

l7
l8 l11l9 l10

l12

l6

Each	link:	100	Gbps

sw2

sw1

sw5

sw6

sw7

sw8

sw3

sw4

Fig. 15: A running example illustrating how the resource abstraction han-
dles multicast through algebraic-expression enumeration, where two circuits
(S1, {D1, D2}) and (S2, D2) need to be reserved.

Use case 1 - multicast: Consider the example in Fig. 15,
where the first circuit is a multicast circuit from S1 to D1 and
D2, and the second one is a unicast circuit from S2 to D2. The
routes for these circuits, computed by the underlying routing
protocol, are marked in red and yellow, respectively. The
resource abstraction captures the bandwidth sharing between
these two circuits by introducing auxiliary variables x11 and
x12 for the multicast circuit. Because the traffic duplication for
the first circuit happens at switch 8, we use x11 to represent
the traffic from switch 8 to D1, and x12 to represent the traffic
from switch 8 to D2. In this way, the Mercator domain server
will generate the following set of linear inequalities:

x11 = x1, x12 = x1,
x1 ≤ 100 ∀lu ∈ {l1, l2},
x11 ≤ 100 ∀lu ∈ {l5, l6},
x2 ≤ 100 ∀lu ∈ {l7, l8},

x1 + x2 ≤ 100 ∀lu ∈ {l3, l4},
x12 + x2 ≤ 100 ∀lu ∈ {l11, l12},

(8)

Use case 2 - multi-path routing: Consider the example
in Fig. 16, where the user wants to discover the bandwidth
sharing for two circuits f1 : (S1, D1) and f2 : (S2, D2), and
M1 uses multi-path routing for the circuit f1, i.e., routing to
two egresses e1, e2.

S1
e1

e2
S2

D1

D2

i1

i2𝕄" 𝕄#

100 Gbps link

40 Gbps link

Fig. 16: A running example illustrating how resource abstraction handles
complex routing and traffic engineering policies through algebraic-expression
enumeration and how resource abstractions from different member networks
are stitched, where two circuits (S1, D1) and (S2, D2) need to be reserved.

In particular, the Mercator domain server at M1 introduces
variables x11 and x12 to represent the available bandwidth
from S to egresses e1 and e2, respectively, and share the
introduction of these variables to M2. Then M1 independently
adds an equation x1 = x11 + x12 into its set of linear
inequalities Π1(F). The resulting resource abstraction at both
member networks are then expressed as

Π1(F) : x1 = x11 + x12, Π2(F) : x11 ≤ 40,
x11 ≤ 40, x12 ≤ 40,
x12 ≤ 40, x2 ≤ 40.
x2 ≤ 40,
x11 ≤ 100,

x12 + x2 ≤ 100.

(9)

Using Π1(F) and Π2(F) as the constraint, the user can then

make reservation requests based on the optimization of her
own objective function. For example, to achieve the max-min
fairness between two circuits, the user will reserve x1 = 80
Gbps for (S1, D1) and x2 = 40 Gbps for (S2, D2), where
internally M1 can allocate x11 = x12 = 40 Gbps.
Use case 3 - load-balancing: In the same example in Fig. 16,
assume M1 uses weighted-cost-multi-path (WCMP) and has
an internal policy to allocate bandwidth for the circuit (S1, D1)
along two path S1 → e1 and S1 → e2 in a ratio of 1:2. With
this policy, the previous reservation request with x1 = 80
Gbps and x2 = 40 Gbps is no longer valid as x11 and x12

cannot reach 40 Gbps simultaneously. To capture this policy
so that the user does not make the invalid reservation request,
the Mercator domain server at M1 introduces an additional
equation x12 = 2x11 into Π1(F) and sends to the user. And
the user can compute the valid, optimal reservation decisions,
e.g., x1 = 60 Gbps and x2 = 40 Gbps, to achieve max-min
fairness.

APPENDIX B
ANALYSIS OF THE RESOURCE ABSTRACTION

OBFUSCATING PROTOCOL

In this appendix, we conduct rigorous analysis on different
properties of the proposed obfuscating protocol.
Correctness: We first study the correctness of this protocol.
In particular, we start by proposing and proving the following
propositions.

Proposition 1 (Resource Abstraction Equivalence): The
bandwidth feasible region of the set of circuits F over N
member networks represented by Equation (7) is the same as
the bandwidth feasible region represented by Ax ≤ b where
A = [A1,A2, . . . ,AN] and b = [b1,b2, . . . ,bN].

Proof: To prove this proposition, we first observe that the
bandwidth feasible region of Ax ≤ b is the same as that of[

A IMN

] [
x, xs

]
= b (10)

Representing P = [P1, . . . ,PN] ∈ Rk×MN , we first
observe that

[∑
PiAi P1 . . . PN

]
= P

[
A IMN

]
,

and that
∑

Pibi = Pb [39]. It is easy to see that when[
x xs

]
satisfies Equation (10), it also satisfies Equation (7).

Next, from the results in [38] and that P ∈ Rk×MN , we
have rank(P) = MN < k. As a result, P has a left inverse
matrix P−1left where P−1leftP = IMN

. Hence when
[
x xs

]
satisfies Equation (7), i.e., P

[
A IMN

] [
x, xs

]
= Pb, we

have
P−1leftP [A IMN] [x, xs] = P−1leftPb,

which then transforms into Equation (10). Therefore, Equa-
tions (7) and (10) represent the same bandwidth feasible
region, which completes the proof.

In addition, we also have an interesting lemma, which
serves as an alternative correctness proof of the equivalence
proposition.

Lemma 1: Given the set of linear equations in Equation (7),
the aggregator can use Gaussian Elimination to get Ax ≤ b.
The complete proof can be found in our technical report [56].

Security: Next, we give the following proposition on the
privacy-preserving property of the proposed protocol.

Proposition 2 (Resource Abstraction Privacy-Preserving):
In the semi-honest security model, the proposed resource
abstraction obfuscating protocol ensures that (1) the aggregator
cannot associate any linear equation it receives in Πp(F) with
any particular member network, and (2) for any Mi, it does
not know any linear inequality from any other Πj(Fj) (j 6= i).

The complete proof can be found in [56]. Even with Lemma 1
and the inter-member-network-path information of each cir-
cuit, the aggregator still cannot associate any linear inequality
in Ax ≤ b with the corresponding member network or any
networking device (i.e., switch or link). This is because (1) the
set of linear equations sent by each member network do not
represent its original feasible region, and (2) the inter-member-
network-path does not reveal any topology information inside
member networks.

With both propositions, we can get the following theorem.
Theorem 1: Given a set of circuits F that span over N

member networks, the proposed resource abstraction obfus-
cating protocol ensures that the aggregator receives equivalent,
privacy-preserving resource abstraction and each member net-
work only knows its own bandwidth feasible region.

As stated in Section IV-A, the resource abstraction obfuscat-
ing protocol was designed for the semi-honest security model.
In a malicious setting (e.g., some member networks may
collude or be breached by one same attacker), the colluded
member networks or the attacker still cannot associate a linear
inequality to any unbreached member network, as long as the
aggregator is not breached.
Efficiency: We next analyze the efficiency of our protocol at
different phases. During the initialization phase, the main over-
head comes from the process each member network agreeing
on k, and each Mi share Ci and Di with Mi+1. The first part
can be efficiently realized using leader-election algorithms in
ring topology or pre-configured. For the second part, it can
be efficiently realized by sharing random seeds between Mi

and Mi+1. In the obfuscating phase, the computation overhead
is also low because it only involves simple, cheap matrix
operations, e.g., addition and multiplication.

One may have concern on the transmission overhead of
our protocol in the transmission phase because we disguise
the set of linear inequalities of each member network into a
larger set of linear equations. However, observing the set of
equations sent by each Mi in Equation (6), we can see that
most of the columns of the LHS coefficient matrix are zero-
columns. Therefore, each Mi only needs to send nonzero-
columns to the aggregator and specifies the indice of these
columns, substantially reducing the amount of data needs to
be transmitted from Mi to the aggregator. We quantify the
transmission overhead of our obfuscating protocol as follows:

Proposition 3 (Transmission Overhead): Given a resource
discovery procedure for a set of circuits F spanning over N
member networks, the transmission overhead of the resource

abstraction obfuscating protocol at each member network is
O(k|F |), where k >

∑
mi.

APPENDIX C
PRACTICAL ISSUES OF SUPER-SET RESOURCE

ABSTRACTION PROJECTION

In this appendix, we discuss practical issues of the super-set
projection technique.
Update of Πfull: We ensure the freshness of Πfull via two
mechanisms. First, the Mercator domain servers at member
networks periodically send updated information to the ag-
gregator. Second, when the reservation system receives and
successfully executes a resource reservation request from
the user, it sends a notification to the aggregator with the
reservation details so that the aggregator can update Πfull.
The aggregator will only query the Mercator domain servers
to obtain an up-to-date abstraction for the user when the user
fails to reserve the resource based on the projected abstraction.
Handling heterogeneous flows: One may notice that the
super-set projection technique is designed based on the as-
sumption that given a source-destination member network pair,
all the traffic flows between these two member networks will
be treated homogeneously by all other member networks. In
practice, flows between the same source-destination member
network pair may be handled differently by other member
networks, i.e., they are heterogeneous flows. To address this
limitation, we use traffic classes to differentiate heteroge-
neous flows. In particular, for each source-destination member
network pair with G different traffic classes, the super-set
projection technique considers these classes as G separate
artificial circuits and proactively discovers the bandwidth
sharing among these G circuits and other artificial circuits.

